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ABSTRACT 

Adaptive mesh refinement (AMR) of hyperbolic systems allows us to refine the spatial 

grid of an initial value problem (IVP), in order to obtain better accuracy and improved 

efficiency of the numerical method being used. However, the solutions obtained are still 

limited to the local Courant-Friedrichs-Lewy (CFL) time-step restrictions of the smallest 

element within the spatial domain. Therefore, we look to construct a multi-rate time-

integration scheme capable of solving an IVP within each spatial sub-domain that is 

congruent with that sub-domain’s respective time-step size.  

The primary objective for this research is to construct a multi-rate method for use 

with AMR. In this thesis we will focus on constructing a 2nd order, multi-rate partitioned 

Runge-Kutta (MPRK2) scheme, such that the non-uniform mesh is constructed with the 

coarse and fine elements at a two-to-one ratio. We will use general 2nd and 4th order finite 

differences (FD) methods for non-uniform grids to discretize the spatial derivative, and 

then use this model to compare the MPRK2 time-integrator against three explicit, 2nd 

order, single-rate time-integrators: Adams-Bashforth 2 (AB2), Backward Differentiation 

Formula 2 (BDF2), and Runge-Kutta 2 (RK2). 
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I. INTRODUCTION  

There is an ever increasing need to develop numerical methods capable of solving 

large-scale, real-world problems. In fact, many of these problems arise in the physical, 

biological and engineering sciences, such that we must use numerical models, because 

the problems cannot be solved analytically. In other words, we seek to find numerical 

methods to approximate the solution to a problem, which is often modeled as a partial 

differential equation (PDE), or system of PDEs. 

For example, the Department of Applied Mathematics of the Naval Postgraduate 

School in cooperation with the Naval Research Laboratory, both located in Monterey, 

California are continually refining a modeling environment for solving the three 

dimensional (3D) compressible Euler and/or Navier-Stokes equations; this is a Non-

hydrostatic Unified Model of the Atmosphere, known as NUMA. The NUMA model is 

constructed using an element-based Galerkin framework, which allows either continuous 

(CG) or discontinuous (DG) high-order Galerkin methods, and can be used as either a 

mesoscale or global model, which exhibits excellent scaling properties. Additionally, the 

model is extremely flexible and allows the user to easily interchange new time-

integrators, grid and data structures, or new basis functions, thereby ensuring that the 

model is algorithmically flexible. 

There is a significant interest in using the discontinuous Galerkin method (DG) 

for solving fluid dynamics problems; studies by [1] and [2], have shown that the DG 

method is a good choice for the construction of future non-hydrostatic numerical weather 

prediction models, as it combines high-order accuracy of the solution with geometric 

flexibility of non-conforming (unstructured) grids. In order to increase the scale 

resolution capabilities of DG, as well as to take better advantage of available computing 

power, the use of adaptive mesh refinement (AMR) for a quadrilateral non-conforming 

grid, is currently being investigated. 
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In Figures 1 and 2, we see a snapshot of a rising thermal bubble being solved on 

both an adaptive and uniform mesh, using the quadrilateral based DG method. Figure 1 

shows the solution at time 0t =  sec., and Figure 2 is at time 1000t = sec. 

 

 

Figure 1.   Rising Thermal Bubble (Initial Time = 0 sec.) 

 

Figure 2.   Rising Thermal Bubble (Final Time = 1000 sec.) 
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To motivate the usefulness of the multi-rate approach let us first describe the AMR 

strategy. In the figures above, we note that the meshes were refined every second 

throughout a 1000 second simulation. For example, using a time-step of 0.005t∆ =  

would refine the mesh at every 200 time-steps, in order to maintain the desired resolution 

within the areas of the grid where the temperature variation exists. The refined elements 

were chosen at the respective time-steps by looking at the value of the temperature within 

each element and then determining whether that value was below or exceeded a 

predetermined threshold.  

The total runtime of the fully resolved solution (Figure 1, right panel) is 

approximately 287 seconds compared to the AMR solution with a runtime of 88 seconds. 

This is a speed-up of nearly 3.26. Even though the AMR solutions require less runtime, 

the overall numerical method is still restricted to the smallest time-step, which is 

determined by the smallest grid size within the spatial domain. Therefore, both the 

uniform and adaptive mesh solutions require the same time-step size. Although we can 

reduce the computational cost using AMR, we would like to take advantage of the non-

conforming grid by simultaneously using larger time-steps within the coarse regions of 

the spatial domain, and smaller time-steps within the fine regions. This problem of using 

a time-step size, commensurate with the element size, is the motivation behind my 

research. 

From the literature we find that the current approaches for tackling time-

integration include: fully explicit, fully implicit, or a combination of the two, known as 

implicit/explicit (IMEX) methods. Currently, NUMA uses the IMEX time-integration 

method, which circumvents the fast and slow propagating waves by splitting up the 

physical process of the problem being solved, such that the fast moving components are 

handled implicitly, while the slow moving components are handled explicitly. Although 

the implicit solutions have no restriction on how large of a time-step one may take, the 

overall numerical method is still restricted to the time-step size determined by the explicit 

solution’s spatial step-size. Therefore, we look to develop a multi-rate, time-integration 

method that will allow multiple time-steps to be used simultaneously within the various 

elements of the spatial domain. 



 4 

A. OBJECTIVES OF RESEARCH 

In this thesis, we will focus on the construction and development of an explicit, 

second-order, strong stability preserving (SSP) Runge-Kutta (RK), multi-rate method, 

which we will use to solve the first-order, 1D, advection equation with constant wave 

speed. This multi-rate method will then be compared to its equivalent single-rate SSP 

RK2 method, using both accuracy and efficiency as the two primary metrics. 

The emphasis of the thesis is on the time-integration aspects of numerical 

modeling, and for this reason we restrict our spatial discretization to simple finite 

difference (FD) methods, albeit of high order, and generalized for non-uniform grid 

spacing. We will show that the multi-rate approach will retain its formal order of 

accuracy, while increasing the efficiency of the numerical model. We will show this 

using complexity analysis (i.e., operations count) and measuring total wall-clock time for 

the single-rate versus multi-rate approaches. 

This thesis is organized into three main chapters, not including the introduction 

and summary chapters. In Chapter II we will look at how to represent the spatial 

derivative of our initial value problem (IVP), by constructing a range of finite difference 

stencils of various orders of accuracy. We will then discuss how to choose which stencil 

is best applicable by looking at the accuracy, stability and convergence of each spatial 

stencil, in combination with a forward Euler scheme in time. In Chapter III, we will shift 

our focus to looking at three different time-integration methods within the multi-step and 

multi-stage families. Specifically, we will look at the Adams-Bashforth (AB), Backward 

Differentiation Formula (BDF), and Runge-Kutta (RK) methods (each explicit in time) 

for representing our temporal derivative. We will solve our IVP using each time-

integrator in conjunction with the FD spatial stencils developed in Chapter II. Finally, in 

Chapter IV we introduce the idea of a non-conforming grid and derive an explicit, 

second-order, SSP RK multi-rate method. Here, we use the single-rate results from 

Chapter III in order to compare against our multi-rate method. The thesis will be 

concluded by a short summary of findings and a discussion on future research. 
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B. APPLICATION 

Throughout this thesis, the governing equation we will use as our test case, is the 

hyperbolic PDE 

2
2 2

2 0  ,                                               (1.1)u c u
t

∂
− ∇ =

∂
 

which is commonly referred to as the wave equation, with c being the displacement from 

rest (or wave speed). We chose to use Equation (1.1) because we can easily compute the 

analytical solution using the method of characteristics, which can only be used for 

hyperbolic problems possessing the right number of characteristic families. Furthermore, 

the principal types of problems solved using NUMA are hyperbolic PDEs.  

In order to simplify our problem, we will assume that (1.1) is one dimensional, 

such that 

2 2 2
2 2 2

2 2 2u        0 .                               (1.2)u u uc c
t t x

∂ ∂ ∂
− ∇ = − =

∂ ∂ ∂
 

Additionally, we can rewrite equation (1.2) as 

0 ,                                       (1.3)c c u
t x t x
∂ ∂ ∂ ∂  + − =  ∂ ∂ ∂ ∂  

 

since the mixed derivative terms, 
2

c
t x
∂

±
∂ ∂

, cancel each other out. If we allow 

  ,                                                 (1.4)q c u
t x
∂ ∂ = − ∂ ∂ 

 

then after substituting equation (1.4) into equation (1.3) we find the first order, 1D, wave 

equation, also known as the advection equation to be the following: 

0 .                                                    (1.5)q qc
t x

∂ ∂
+ =

∂ ∂
 

Equation (1.5) represents a right moving wave for constant wave speed, such that 0c > . 

Likewise, we could have also chosen to simplify equation (1.3) as a left moving wave; 



 6 

however, we will now consider Equation (1.5) as the PDE we wish to solve numerically. 

Therefore, the IVP we wish to solve is equation (1.5), along with the proper initial and 

boundary conditions, such that the problem being solved is well-posed. 

 For our purposes, and ease of computation, we impose the following periodic 

boundary conditions for [ 1, 1]x∈ − + :   

   ( 1, )  (1, )                                                    (1.6)

( 1, )  (1, )  ,                                              (1.7)

q t q t

q qt t
x x

− =

∂ ∂
− =

∂ ∂

   

where these boundary conditions will be helpful as we move from our various single-rate 

methods to the construction of a multi-rate partitioned Runge-Kutta method, which we 

will see in Chapter IV. Lastly, we know from the literature, that the analytical solution of 

our linear and homogeneous IVP, Equation (1.5), can be represented by d’ Alembert’s 

solution where we know that the right moving wave can be defined as ( , ) ( )q x t f x ct= − . 
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II. FINITE DIFFERENCES 

In this chapter, we will look at the method of finite differences (FD) using our 

PDE from Chapter I. We will solve the initial-value problem (IVP) using the FD 

approach, where we will change the domain of the continuous problem into a discretized 

form. This means that the dependent variable(s) will exist only at the discrete points of 

the grid generated by our finite difference stencil [3]. Although we know how to solve the 

original continuous PDE analytically, we will show the benefit in using finite differences 

to estimate the solution, and how this method can provide an excellent approximation 

depending on the order of accuracy desired. 

The reason for choosing a PDE, in which we know the solution, is to ensure that 

our numerical method approximates the original PDE well. Once we know that our 

numerical method is consistent and accurate, we can then apply the method to future 

PDEs or systems of PDEs where we may not necessarily know how to compute the 

analytical solution, or finding the exact solution is practically impossible. In these cases, 

we must instead rely on numerical methods that utilize computer algorithms to 

approximate the solutions [4]. 

It is also important to note that in solving an IVP numerically with FD, we must 

replace all continuous derivatives with finite difference approximations; however, we are 

not required to use the same stencil or difference quotient for each derivative within the 

problem. Instead, we are free to choose multiple finite difference schemes for each 

derivative within the PDE. We will see this later in the chapter; however, let’s first take a 

look at how to build different finite difference schemes for approximating these 

derivatives. 

A. SPATIAL FINITE DIFFERENCE APPROXIMATIONS 

Since the linear, first order, 1-D, wave equation has only two first order partial 

derivatives, one in space, q x∂ ∂ , and one in time, q t∂ ∂ , we only need to choose two FD 

stencils. However, we will explore other options for time-integration methods in Chapter 
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III, where we will see that higher-order FD methods are not as practical in time. For now, 

we will focus primarily on the spatial derivative q x∂ ∂ . 

When approximating a derivative using FD, we must make some basic choices 

that involve how we generate the grid, which will serve as the discretized domain for 

each solution in space and time where we want to compute the solution of the modified 

IVP [5]. Clearly, the finer the spatial grid spacing, the more solutions we are required to 

compute at each time step, and the better our approximation will be to the original 

continuous problem; however, we must consider the cost-benefit analysis of higher 

accuracy versus computational cost. It is important to note that a FD stencil with higher 

accuracy is not only a function of the grid spacing, but also the number of grid points 

used to approximate the derivative. 

Figure 3 shows a general grid using uniform spacing in both space and time. This 

grid is used to approximate the derivatives for the solution at each grid point ( , )n
ix t , 

using the grid point ( , )n
ix t  and its neighboring points. Therefore, if we think of the 

solution to the PDE as ( ( ), )q x t t , then ( , )n n
i iq q x t= . 

 

 

Figure 3.   Uniform Grid in Space and Time 
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Finite difference methods are simple to construct and are beneficial when the 

geometry of the IVP is regular. Therefore, for our 1-D wave equation we will currently 

assume we have a uniform grid with periodic boundary conditions for our analysis.  

B. FIRST ORDER APPROXIMATION 

Using the grid points in Figure 3, we are able to construct a first order backward 

FD approximation to the continuous spatial derivative at ( , )n
ix t , using  

1 ( , )n n
i iq q x x t− = − ∆  

such that  

 1 .                                              (2.1)
n n n
i i iq q q
x x

−∂ −
=

∂ ∆
 

We begin with the backward-difference formula instead of the forward-difference 

since it is known in advance that Equation (2.1) is unconditionally stable for the IVP 

(stability analysis will be a major topic throughout this thesis and will be discussed later 

in this chapter, and future chapters, for all numerical methods used). Furthermore, this is 

an obvious choice for the derivative, given that if we take the limit of the right hand side 

as 0x∆ → , we have 

1

0 0

( , ) ( , )lim ( ) lim ( )
n n n n n
i i i i i

x x

q q q q x t q x x tO x O x
x x x

−

∆ → ∆ →

∂ − − −∆
= + ∆ = + ∆

∂ ∆ ∆
 

which is the very definition of the first order derivative of q with respect to x at grid 

point ( , )n
ix t . Therefore, we have built a first order approximation to the IVP such that the 

solution n
iq  is first order accurate ( ( ))O x∆  in space for a “sufficiently” small but finite 

x∆ [3]. In fact, using Taylor series expansion (TSE) of the backward-difference formula 

above will provide a more rigorous proof that Equation (2.1) is indeed first order 

accurate. This can be seen in Appendix A, where we show that the continuous derivative 

is equivalent to the numerical approximation plus the truncation error (T.E.), such that the 

T.E. = ( )O x∆ .  
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Note that the forward-difference formula 

 1 ( )                                  (2.2)
n n n
i i iq q q O x
x x

+∂ −
= + ∆

∂ ∆
 

is also a first order accurate approximation to 
n
iq
x

∂
∂

. 

The big O notation used above has a very accurate mathematical meaning, such 

that when we replace T.E. with ( )O x∆ , this represents the truncation error as being 

bounded by a positive real constant K, multiplied by the absolute value of x∆ , where 

x∆  is reasonably small, such that we can write . .T E K x≤ ∆  as 0x∆ → . In other words, 

the truncation error is on the order of x∆  raised to the highest power found within all the 

terms in the truncation error [3]. We can think of (O) notation as the order of accuracy for 

the numerical method, such that if we look at all of the terms in the TSE, and keep only 

the term with the largest growth rate, then ( )O x∆  means we are keeping all terms of x∆ , 

and throwing away all other terms 2( )x∆  and higher. It is important to note that ( )O x∆  

does not necessarily inform us on how large the truncation error is, yet it does provide us 

an indication on how the numerical method performs as x∆  gets closer and closer to 

zero. This is accomplished by refining our grid spacing.  

For example, if our numerical method is on the order of 2( )O x∆ , then as we 

decrease x∆  by half, the estimated error of the method will decrease by a factor of four, 

such that 

2 2

2 4
x xO O

   ∆ ∆  =    
     

. 

Results for this can be found in Chapter III, where we will look at various 

numerical time-integration methods for solving our IVP. For more information on (O) 

notation, refer to [6]. 
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C. HIGHER ORDER APPROXIMATIONS 

There are many ways we can develop FD approximations for q x∂ ∂ . The normal 

convention for building these representations begins by choosing the specific grid points 

we want to use to approximate the derivative, and then expanding each point about the 

grid point ( , )n
ix t . The most common first order derivative representations can be found in 

Table 1, where we only use two to three grid points to represent these derivatives [3]. 

 

Derivative                       Finite-Difference Representation                           Equation 

 

1

1

( )                                                           (2.3)

( )                                                           (2.4)

                            

n n
i i

n n
i i

n
i i

q q O x
x

q q O x
x

q q
x

−

+

+

−
+ ∆

∆
−

+ ∆
∆

∂
=

∂
21 1

21 2

21 2

( )                                                        (2.5)
2

3 4 ( )                                          (2.6)
2

 3 4 ( )                  
2

n n
i

n n n
i i i

n n n
i i i

q O x
x

q q q O x
x

q q q O x
x

−

+ +

− −

−
+ ∆

∆
− + −

+ ∆
∆

− +
+ ∆

∆
                         (2.7)

















 

Table 1.   Difference Approximations Using Two To Three Points 

 

Equations (2.3) and (2.4) are the backward and forward FD approximations 

respectively, whereas Equation (2.5) is the centered-difference approximation which can 

be computed by subtracting the TSE of ( , )n
iq x x t−∆  from the TSE of ( , )n

iq x x t+ ∆  

about the point n
iq . This gives us a second order accurate difference formula for the first 

derivative using the points 1
n
iq +  and 1

n
iq − . Appendix B outlines how we can construct a 4th 

order, centered difference stencil for the first derivative, which will be used in 

conjunction with the time-integration methods developed in Chapters III and IV to 

analyze single and multi-rate methods in both uniform and non-uniform grids. This 

stencil is 4th order, such that  
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42 1 1 28 8 ( ) .                                  (2.8)
12

n n n n n
i i i i iq q q q q O x
x x

− − + +∂ − + −
= + ∆

∂ ∆
 

It is easy to see how we can construct any FD stencil for first, second or even 

higher order derivatives, as well as mixed partial derivatives, if desired, by using the 

same approach outlined in Appendix B. However, the PDE we will use only requires first 

order derivatives; therefore, we will not need to construct any more FD stencils than what 

has already been shown. 

D. DIFFERENCE REPRESENTATION OF A PDE 

From Chapter I we saw that the IVP in question is the 1-D, first-order wave 

equation, with constant wave speed, c, such that  

,          0.                                              (2.9)q qc c
t x

∂ ∂
= − >

∂ ∂
 

Using either equations (2.3) and (2.4), or the grid points found in Figure 2, we can 

rewrite our PDE in a first order accurate discretized form for both space and time. We 

will use forward Euler to represent the temporal derivative, and Equation (2.3), first order 

backward-difference formula, for the spatial derivative, such that 

1
1       and        .

n n n n n n
i i i i i iq q q q q q
t t x x

+
−∂ − ∂ −

= =
∂ ∆ ∂ ∆

 

Substituting these back into Equation (2.9), we then have the following 

approximation to our PDE: 

1
1 ,                                            (2.10)

n n n n
i i i iq q q qc

t x

+
−− −

= −
∆ ∆

 

where we can rewrite (2.10) such that  

( )1
1        ,      where   .               (2.11)n n n n

i i i i
tq q q q c
x

σ σ+
−

∆
= − − =

∆
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We will see later on in the chapter, that the value of σ  (Courant number) will 

play an important role in determining where our numerical method is stable, as it 

measures how fast information flows across the grid points. 

Equation (2.11) is the explicit forward Euler (first-order upwind) representation of 

the PDE (2.9) using a first order FD stencil in space. The method is considered explicit 

since we are solving the equation for only one unknown value, 1n
iq + , which is the solution 

at the next time step. As previously stated, the spatial and temporal FD schemes do not 

have to be the same; therefore, if we fix the time stencil to be forward Euler, we have an 

infinite number of options for representing the spatial derivative. We could choose to use 

a higher order method in space; however, the overall accuracy of the combined numerical 

method will only be as good as the weakest link. This means that if we use a first order 

method in time and a fourth order method in space, the overall method is still only first 

order accurate. Below are a few more examples for the explicit forward Euler method: 

1
1 1

1
1 2

                                               (2.12)
2

 3 4                                   (2.13)
2

n n n n
i i i i

n n n n n
i i i i i

q q q qc
t x

q q q q qc
t x

+
+ −

+
− −

− −
= −

∆ ∆

− − +
= −

∆ ∆

 

Both methods above are second order accurate in space such that the T.E. for each 

methods is 2( , )O t x∆ ∆ . This is important, given that we can show that the accuracy in 

space and time are independent of each other. However, there are many factors we must 

consider when determining which numerical approximation method to use when solving 

a particular problem. Of these, accuracy, consistency, stability and efficiency must be 

analyzed. Although we want a numerical method that is as accurate as possible, 

consistency and stability are of much more importance, such that if the method is both 

“consistent and stable, then it will converge to the correct solution” [7]. However, if we 

have two methods that are both stable, consistent, and have the same order of accuracy, 

then we might want to look at which method is most efficient (i.e., lower computational 

cost). It is important to note that regardless of how accurate or efficient the method is, if 

we do not have both stability and consistency, then our numerical solution will be of no 
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value [8]. Therefore, we must first ensure the method is stable and consistent, and then 

we can look for how to increase the accuracy or efficiency of the method, depending on 

what is of most importance to us.   

1. Consistency 

We have looked at the accuracy of a single FD stencil; however we have not 

shown how to determine the accuracy of the entire numerical method. Using Equation 

(2.10), we can show the accuracy of the method by first applying TSE about the point n
iq  

and then substituting into the numerical method. 

2 2
1 3

2

2 2
3

1 2

( )( , ) ( )
2!

( )( , ) ( )
2!

n n
n n i i
i i i

n n
n n n i i
i i i

q q tq q x t t q t O t
t t

q q xq q x x t q x O x
x x

+

−

∂ ∂ ∆
= + ∆ = + ∆ + + ∆

∂ ∂

∂ ∂ ∆
= −∆ = − ∆ + − ∆

∂ ∂

 

 Substituting these expansions into Equation (2.10) gives us the following: 

2 22 2
3 3

2 2
( ) ( )( ) ( )

2! 2!

n n n n
n n n ni i i i
i i i i

q q q qt xq t O t q q q x O x
t t x x

c
t x

    ∂ ∂ ∂ ∂∆ ∆
+ ∆ + + ∆ − − − ∆ + − ∆    ∂ ∂ ∂ ∂    = −

 ∆ ∆
  
 

 

where the above equation reduces to: 

2 2
2 2

2 2( ) ( )
2! 2!

n n n n
i i i iq q q qt xO t c O x
t t x x

 ∂ ∂ ∂ ∂∆ ∆
+ + ∆ = − − + ∆ ∂ ∂ ∂ ∂ 

 

( , ) 0 .                                        (2.14)
n n
i iq qc O t x
t x

∂ ∂
+ + ∆ ∆ =

∂ ∂
 

Thus, we have proven that method (2.10) is first order accurate in both space and time. 

Now, a numerical method is said to be consistent if the difference between its 

approximation to the PDE and the exact solution, i.e., truncation error, goes to zero in the 

limit, as the grid is refined. Therefore, if we allow both the temporal grid spacing 
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parameter, t∆ , and spatial grid spacing parameter, x∆ , in Equation (2.14) to both go to 

zero in the limit, such that ( , ) 0t x∆ ∆ → , then we can clearly see we will recover the 

original continuous PDE, Equation (2.9), thereby showing the numerical method, (2.10),  

is consistent. This same procedure is valid for any numerical method, where more 

information on consistency and stability for a generalized discretization can be found in 

most numerical textbooks. 

2. Stability and Convergence 

When deciding whether or not a FD stencil is appropriate to use in solving an 

IVP, we have looked at the properties of accuracy and consistency; however, one of the 

most critical properties to analyze, is the stability of the method. In fact, not only 

stability, but also the rate at which the numerical solutions for the method being used 

converge to the true solution of the PDE. 

One way to measure the difference between the true solution, which we will 

define as n
iφ , and our numerical solution, n

iq , is to take the norm of the difference 

between the two solutions at each grid point [9]. Although there are many forms for 

computing a norm, we will use the Euclidean, or 2L , norm, which is defined as 

1
2

2

2
1

N

i
i

q q
=

 ≡  
 
∑ . 

Therefore, we want to see that in the limit, as ( , ) 0t x∆ ∆ → , the value of the norm 

between the numerical solution and the true solution converges on the order of 

( , )r sO t x∆ ∆ , where r and s represent the order of accuracy, such that 

2
( , )n n r s

i iq O t xφ − = ∆ ∆ . 

Note that this numerical method satisfies the Lax Equivalence Theorem, “which 

states that if a FD scheme is linear, stable and accurate of order ( , )r s , then it is 

convergent of order ( , )r s ” [9]. In other words, this theorem establishes the fact that if a 

unique solution exists for our IVP, and the solution depends continuously on both the 
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initial data and boundary conditions, then the problem is considered to be well-posed; 

such that, if we have a consistent and stable method, then the numerical method will 

indeed converge to the true solution of the original PDE [8]. 

The above theorem is extremely important and forces us to not simply develop a 

FD scheme that is accurate or consistent. According to [9], consistency is not enough to 

assure the convergence of a numerical method. The method must also be stable. There 

are a great number of consistent finite-difference methods that are utterly useless because 

they are unstable. Therefore, if we return to the definition of stability, we must ensure 

that the numerical solution, n
iq , does not grow without bound, such that for every time 

step n t∆ , less than the final time T, we can find a constant TC  that satisfies 

0n
Tq C q≤ , for all values of  and t x∆ ∆ , that are reasonably small [9]. 

3. Von Neumann Stability Analysis 

We have just seen the importance of stability; however, we would now like to 

extend this idea to our particular problem at hand, such that using Equation (2.10) or 

(2.11), we can find for what values of σ  our method will be stable. Any value that 

satisfies the stability conditions will then fall into what we call the stability region. 

The most widely known and used procedure for analyzing stability is the Von 

Neumann Method, such that Von Neumann’s stability analysis looks at the discretized 

solution for a given time step, and represents this solution as a finite Fourier series, where 

the overall stability of the numerical method can be determined by analyzing each 

element or Fourier mode of the series [9]. In this manner, we can ensure that the overall 

stability of our method will indeed be stable if every Fourier mode is stable.  

Below is the Fourier series representation for the numerical solution n
jq ,  

( ) l

N
n ik j xn

j l
l N

q q e ∆

=−

= ∑   
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where ( )n
lq  represents the amplitudes of the wave, 1i = − , lk  are the wave numbers and 

lk x∆  represents the phase angle, sometimes denoted lφ , which determines the low from 

high frequency waves, such that a phase angle of zero indicates a large amplitude wave 

and a phase angle of π  indicates a small amplitude wave [8].  

 It would be extremely tedious to evaluate all Fourier modes; therefore, if we 

instead look at just one, where we ensure that this mode has an amplitude ( )nq , that does 

not grow for all time, and is bounded such that ( ) 1nq ≤ , then we can determine where 

our region of stability lies. For more detailed information on Von Neumann’s Method, 

look to [3], [8], and [10]. 

 If we now concentrate on the single Fourier mode 

( )nn ij
jq q e φ=  , 

then we can substitute this mode into Equation (2.11), with the following statements: 

1 1 ( 1)
1,        ,        n n ij n n ij n n i j

j j jq G e q G e q G eφ φ φ+ + −
−= = = , 

such that we have 

( )1 ( 1)n ij n ij n ij n i jG e G e G e G eφ φ φ φσ+ −= − −  

where nG  replaces ( )nq  as the amplitudes. If we now simplify the above expression by 

dividing through by n ijG e φ , we find that  

1 (1 )iG e φσ −= − − . 

 Using Euler’s formula, cos sinie iφ φ φ± = ± , offers 

1 (1 cos ) sin ,                                       (2.15)G iσ φ σ φ= − − −  

which we know is the graph of a circle centered at (1 ,0)σ− with radius σ . Note that we 

want to solve Equation (2.15) for σ  values that satisfy 1G ≤  where 
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1.                                                     (2.16)c t
x

σ ∆
≡ ≤
∆

 

From Equation (2.15) we find that the solution is 1σ ≤  and is referred to as the 

Courants-Friedrichs-Lewy (CFL) condition, which ensures that our solution for this 

specific numerical method will be stable within the stability region defined by 1σ ≤  [10]. 

This can be seen in Figure 4. This figure depicts the regions of stability for Equation 

(2.11), such that stability is maintained for values inside of the unit circle (solid blue 

line), given a particular Courant number. Several values for σ  have been provided, 

which demonstrates that for 0 1σ≤ ≤ , the method is stable.  

Another method for analyzing the stability region is to look at the magnitude of 

the amplification factor G , such that for 1G ≤  the method is stable. Figure 5 shows a 

contour plot, where each contour line represents a value of G  for 0.5 1.15σ≤ ≤  and 

0 2φ π≤ ≤ . Here we chose a few values of 1σ > , in order to verify that they indeed 

correspond to values of 1G > , therefore proving that Equation (2.11) is unstable for 

Courant values greater than one. 

 

 

Figure 4.   Stability Region for Forward Euler w/ 1st Order Upwind 
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Figure 5.   Contour Plot for Forward Euler w/ 1st Order Upwind 
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III. TIME-INTEGRATION METHODS 

In Chapter II we introduced finite difference (FD) methods and demonstrated how 

we can use these methods to approximate spatial derivatives. FD are based on Taylor 

series expansion (TSE), and are also used to derive time-integration stencils, which we 

will use to solve our initial value problem (IVP). In this chapter, we will turn our focus to 

two branches of time-integration methods known as multi-step and multi-stage. We will 

not go into great detail for either of these methods, as they can be found in most 

numerical analysis texts. However, we will briefly introduce these methods for the 

purpose of comparing each method with single-rate results using our particular IVP. 

A. MULTI-STEP METHODS  

Multi-step methods are all methods that require starting values from several 

previous time steps. These methods can be very useful; however, they require prior 

information from the system being solved. Therefore, they must first be started by using 

an initial value, then implementing a one-step method to receive two values, then a two-

step method to receive three values, and so on, depending on the order of the method. In 

fact, Forward Euler (explicit method) and Backward Euler (implicit method) are first-

order multi-step methods, although they both contain only one-step.  

Other multi-step methods include the Trapezoidal and Leapfrog schemes, which 

are both implicit, second-order accurate methods. In general, there are two particular 

families of multi-step methods: the Adams methods and the Backward Differentiation 

Formulas. We will start by looking at the Adams methods. 

1. Adams Methods 

Within the Adams family of multi-step methods, the two most commonly used are 

Adams-Bashforth of order p, (ABP), and Adams-Moulton of order p, (AMP), For our 
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purposes, we want to only focus on explicit time integration methods; therefore, we will 

only look at ABP, as these methods are explicit in time, whereas the AMP are all implicit 

in time.  

The general formula for the Adams-Bashforth method for solving the IVP, 

0 0 0' ( , ),     ( ) ,     ,q F t q q t q t t= = ≥  

is 

1 1 1

1
( , ) ,                                  (3.1)

m
n n n j n j

m j
j

q q t b F t q+ + − + −
−

=

= + ∆ ∑  

such that any ABP method can be derived by Equation (3.1), which can be constructed 

using either Taylor series expansion or Lagrange interpolating polynomials. If we turn 

our focus to AB2, where 2m = , 1
3

2
b = , and 0

1

2
b = −  using Equation (3.1), we can see 

that we achieve the following formula, 

( )1 1 13 ( , ) ( , ) ,                               (3.2)
2

n n n n n ntq q F t q F t q+ − −∆
= + −  

which is a two-step method, and requires the solutions at two previous times, nq  and 
1nq − , in order to compute the next solution, 1nq + , which is at time 1nt + . Therefore, we can 

use any single-step method we like to jumpstart AB2; however, in order to maintain 2nd 

order accuracy, the single-step method must also be 2nd order accurate. For a more 

detailed description of how Equation (3.2) is constructed using TSE, look to Appendix D. 

 Before using AB2 with our IVP, it is necessary that we know the stability region 

of this method; therefore, if we first assume that there is no error within our spatial 

discretization method, then if we let ( , )n n nF t q qλ= , and 1 1 1( , )n n nF t q qλ− − −= , then when 

we perform the Von Neumann stability analysis for AB2, we have the following: 
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( )

( )

1 1

( 1) ( 1)

3 ,      where  
2

3 ,
2

n n n n

i n in in i n

zq q q q z t

ze e e eθ θ θ θ

λ+ −

+ −

= + − = ∆

− = −

 

where we let n inq e θ= , because we seek to find the curve for which 1nq = , and defines 

the boundary of stability. Then, solving for z, we find: 

2(cos sin ) 2 .
3 cos sin

iz
i

θ θ
θ θ
+ −

=
− +

 

If we now separate the real from the imaginary, we find that: 

2 2

2 2

2 2

2 8 2 6
(3 )

4sin cos 8sinIm( )
(3

)

)

Re( cos cos sin
cos sin

z
cos si

z

n

θ θ θ
θ θ

θ θ θ
θ θ

− + + −

−

=
− +

+
=

− +

  , 

such that, plotting the Re( )z  versus the Im( )z  provides the region of stability for AB2, 

which is shown in Figure 6. From the figure, we see that for any value of z tλ= ∆  chosen 

within this region, the solutions to the IVP will remain stable. However, as stated 

previously, this is assuming we have zero error within our spatial discretization method. 

This is important as it allows us to see where each time-integration method is stable, 

independently of the spatial scheme.  
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Figure 6.   AB2 Stability Region 

We have now seen the general formulas for Forward and Backward Euler, and 

AB2. In fact, using the following multi-step formula, 

1 1
1

0 1
( , ) ,                          (3.3)

m m
n n j n j n j

j j
j j

q a q t b F t q
− −

+ − − −

= =−

= + ∆∑ ∑  

if we let 1m = , then we have a one-step method, such that Equation (3.3) becomes, 

( )1 1 1
0 1 0( , ) ( , )n n n n n nq a q t b F t q b F t q+ + +

−= + ∆ + . 

Now, if we let 0 0 1a b= = , and 1 0b− = , we find that the above equation becomes 

1 ( , )n n n nq q tF t q+ = + ∆ , 

which is the exact formula for the explicit Euler Method. Therefore, we see that Euler is 

indeed a multi-step method for m-step equal to one, and is equivalently an Adams-

Bashforth method of order one (AB1). 

Now, using Equation (3.3) and the coefficients from Table 2, we can formulate a 

few of the most commonly used multi-step, time-integration methods of order 1, 2,3p = . 



 25 

Method (P) Coefficients 

Euler (1) 
 

Backward Euler * (1) 
 

Trapezoidal * (2) 
 

Leapfrog (2) 
 

BDF2 * (2) 
 

AB2 (2) 
 

AM2 * (3) 

0 0 11,  0a b b−= = =  

0 1 01,  1,  0a b b−= = =  

0 1 0 1
1

2
1,  ,  0a b b b−= = = =  

0 1 1 1 00,  1,  0,  2a a b b b−= = = = =  

0 1 1 0 1
4 1 2

3 3 3
,  ,  ,  0a a b b b−−= = = = =  

0 1 1 0 1
3 1

2 2
0,  ,  a a b b b− −= = = = =  

0 1 1 0 1
5 8 1

12 12 12
1,  ,  0,  ,  ,  a a b b b− −= = = = =  

Table 2.   Multi-step Methods of Order p = 1,2,3 *Implicit Method 

From Table 2 we also notice that depending on the value of the jb  coefficient, for 1j = , 

then Equation (3.3) will generate either explicit or implicit time-integration methods. In 

other words, for all values of 1 0b− ≠ , then the multi-step method will be implicit in time. 

2. Backward Differentiation Formulas 

Another family of multi-step methods is known as the Backward Differentiation 

Formulas (BDF) of order p, such that BDF2 represents a two-step method, which is 

second order accurate in time. It is important to note that the number of steps in the 

method does not necessarily determine the order of accuracy of the method. In general, it 

is possible to prove that the maximal order of a convergent implicit, m-step method, using 

Equation (3.3), is at most 2m +  if m is even, and 1m +  if m is odd; however, for explicit 

schemes, an m-step method cannot attain an order greater than m [11]. This is known as 

the first Dahlquist barrier. For example, Table 2 lists AM2 as a two-step method; 

however, this is an implicit time-integration method with 3rd order accuracy in time. 
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Although Equation (3.3) is the general equation for all multi-step methods, we 

saw that there was a more general expression for the family of ABP methods using 

Equation (3.1). This is also true of BDFP, such that we can express every BDFP method 

using the following equation: 

1 1 1

0
( , ) ,                                       (3.4)

m
n j n n

m j
j

a q tF t q+ − + +
−

=

= ∆∑  

Previously, we showed that AB1 was equivalent to Forward Euler (explicit 

method). In a similar fashion, we can show that Backward Euler (implicit method) is 

equivalent to BDF1, for 0 11,  1m a a= = = . Yet, of more interest to us, is BDF2, as this 

method will provide us with an additional 2nd order time-integration method to use for 

our IVP. However, given that we want to only focus on explicit time-integrators, we must 

look at how we can rewrite BDF2 so that it is instead explicit in time. 

 

First, let us consider BDF2: 

1 1 1 14 1 2 ( , )                                (3.5)
3 3 3

n n n n ntq q q F t q+ − + +∆
= − +  

We can see that the implicit form of BDF2 requires information from two previous time 

steps, in addition to the solution at time 1nt + . In order to solve for 1nq + , we would need to 

solve a system of equations; therefore, in order to remove the implicitness of the 

equation, we can instead use an approximation for 1( )nF q + by the method of 

extrapolation. Since we can solve the IVP for the solutions at 1( ) and ( )n nF q F q − , then if 

we say that 

1 1 1( ) ( )  and  ( ) ( ) ,n n n n n nF F q F q F F q F q− + +∆ = − ∆ = −  

and then approximate 1n nF F+∆ ≈ ∆ , we will find that 

1 1

1 1

( ) ( ) ( ) ( )

( ) 2 ( ) ( ) .

n n n n

n n n

F q F q F q F q

F q F q F q

+ −

+ −

− ≈ −

≈ −
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However, this approximation uses the assumption that we can use a linear 

extrapolation. Therefore, if we approximate 1( )nF q +  by 1( ) and ( )n nF q F q −  using TSE 

about 1( )nF q + , we find: 

1
1 2

1
1 1 2

( )( )    ( ) ( ) ( )

( )( )    ( ) ( ) 2 ( ) .

n
n n

n
n n

F qa F q F q t O t
t

F qb F q F q t O t
t

+
+

+
− +

∂
= − ∆ + ∆

∂

∂
= − ∆ + ∆

∂

 

Now, if we multiply (a) by 2 and subtract (b), then we get an expression for 1( )nF q + , 

such that, 

1 1( ) 2 ( ) ( ) .n n nF q F q F q+ −= −  

Although both methods provided the same expression for 1( )nF q + , we have found that 

the solution using the TSE approach is exact, whereas, we cannot always guarantee the 

linear extrapolation method will work. If we now substitute this approximation back into 

Equation (3.5), we have an explicit formula for BDF2, such that 

( )1 1 1 14 1 2 2 ( , ) ( , )  .                  (3.6)
3 3 3

n n n n n n ntq q q F t q F t q+ − − −∆
= − + −  

Refer to Appendix D for a more thorough derivation of Equation (3.6). 

Let us now look at the Von Neumann stability analysis for Equation (3.6), where 

we again assume there is no spatial error, such that,  

( )1 1 14 1 2 2
3 3 3

n n n n nzq q q q q+ − −= − + − , 

where we let 1 ( 1) 1 ( 1),  ,  and n in n i n n i nq e q e q eθ θ θ− − + += = = , such that factoring out the term 
ine θ  provides the following expression: 

( )4 1 2 2 .
3 3 3

i i ize e eθ θ θ− −= − + −  

Now, solving for z, we find that 
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4 4 2cos sin
3 3 3
4 2 2cos sin
3 3 3

i
z

i

θ θ

θ θ

 − + 
 =
 − + 
 

 . 

Therefore, separating the real from the imaginary, we finally have the following: 

2 2

2

2

2 6 4
4cos 4

3sin cos 4sinIm( )
4cos

e( )

4

R cos cos sin
cos

z
c s

z

o

θ θ θ
θ θ

θ θ θ
θ θ

− + + −
− +

− +
=

− +

=

  , 

such that, a plot of the stability region for BDF2 is shown in Figure 7, where we see that 

for any value of z tλ= ∆  chosen within this region, the solutions to the IVP will also 

remain stable assuming no spatial error.  

 

 
Figure 7.   BDF2 Stability Region 
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B. MULTI-STAGE METHODS  

Like multi-step methods, multi-stage methods have the desirable property that 

they can achieve very high-order accuracy, while simultaneously reducing the amount of 

derivatives that need to be computed at each grid point. In order to design a multi-stage 

method, let us first consider the ordinary differential equation (ODE), ' ( , )y F t y= , such 

that if we integrate from time 1 to n nt t + , then we can show that, 

1 1

1( ) ( ) '( ) ( , ( ))
n n

n n

t t
n n

t t

y t y t y t dt F t y t dt
+ +

+ − = =∫ ∫ . 

If we now apply the trapezoidal rule, we get 

( )1 1 1 2( ) ( ) ( , ( )) ( , ( )) ( )
2

n n n n n nty t y t F t y t F t y t O t+ + +∆
− = + + ∆ , 

which is the Trapezoidal method in Table 2, such that, 

( )1 1 1( , ) ( , )
2

n n n n n nty y F t y F t y+ + +∆
= + + , 

where the global error is 2( )O t∆ ; therefore, this method is a second order, implicit multi-

step method. It is important to note, that in general, where we have written t∆ , we 

typically write h, such that h is any step size, and is not restricted to only time. However, 

for our purpose in solving the IVP, we will use these methods as time-integrators where 

we let h t= ∆ . 

Although we have an expression for an implicit, multi-step method, we instead 

want an explicit, multi-stage method. To accomplish this, we will now use Forward Euler 

to solve the ODE for 1ny + , such that Euler’s method will be called a “predictor,” and 

labeled as 1ny +
 . We then substitute 1ny +

  into the Trapezoidal method, known as the 

“corrector,” which gives us the following: 

( )

1

1 1 1

Euler:              ( , )                                   (predictor)

Trapezoidal:    ( , ) ( , )        (corrector)
2

n n n n

n n n n n n

y y tF t y
ty y F t y F t y

+

+ + +

= + ∆
∆

= + +




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The above combination of Euler and Trapezoidal methods is referred to as Heun’s 

method, and is now an explicit, second order, multi-stage method. We may also choose to 

look at the above method by writing it the following way: 

( )

1
1

2 1

1
1 2

( , )

( , )  ,                                                  (3.7)
1
2

n n

n n

n n

k tF t y
k tF t y k

y y k k

+

+

= ∆

= ∆ +

= + +

 

where the number of stages is represented by ki , (i = 2,…,p) . Here, Heun’s method, 

Equation (3.7), is known as a two-stage method, for 2p = .  

1. Explicit Runge-Kutta Methods 

We have just shown how to construct a very simple, explicit, multi-stage method, 

where Heun’s method is classified within a much larger family of multi-stage methods 

known as Runge-Kutta of order M (RKM). Here, Heun’s method is most commonly 

referred to as RK2.  

In general, any explicit p-stage RKM method can be constructed in the following 

way: 

1

1

1

1

1

( , )

,    ,   2,...,

n n

i
n n

i i ij j
j

p
n n

j j
j

k tF t y

k tF t d t y c k i p

y y b k

−

=

+

=

= ∆

 
= ∆ + ∆ + = 

 

= +

∑

∑

, 

where any RKM  method is determined by the coefficients ,  ,  ,  and p c d b , which are 

typically displayed in a table referred to as a Butcher tableau, after J.C. Butcher [10].  
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p – Number of stages. This is not to be confused with the order of the method; 

hence, change of subscript to M in RKM. For example, there are fifth order RK 

methods with six stages. 

c – A p x p coefficient matrix. 

d – Row vector of size p. 

b – Row vector of size p. 

Although we will not focus on the derivation of how these parameters are chosen for 

specific RKM methods, the reader can find more information in “Numerical Methods for 

Ordinary Differential Equations,” by Butcher [10] or “Numerical Analysis,” by Burden 

and Faires [12]. 

Below are examples for RK2, RK3 and RK4, with their associated Butcher 

Tableau: 

( )

1
1

2 2 1

1
1 2

( , ) 0 0 0
: ( , )                                 1 1 0

1 11
2 22

n n

n n

n n

k tF t y
RK k tF t y k

y y k k

+

+


= ∆


= ∆ +


 = + +


 

( )

1

1
2

3

3 1 2

1
1 2 3

( , )
0
1 1,

2 2 2 2:                       1 1 2, 2
1 2 11 2 1 6 3 6

6 3 6

n n

n n

n n

n n

k tF t y
ktk tF t y

RK
k tF t t y k k

y y k k k+

 = ∆


∆  = ∆ + +   


= ∆ + ∆ + +

 = + + +

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( )
( )

1

1
2

2
4 3

4 3

1
1 2 3 4

( , )
0

, 1 12 2 2 2
1 10: ,                2 22 2
1 0 0 1

, 1 1 1 1
6 3 3 61 2 2

6

n n

n n

n n

n n

n n

k tF t y
ktk tF t y

ktRK k tF t y

k tF t t y k

y y k k k k+

 = ∆


∆  = ∆ + +   


∆  = ∆ + +  
 

 = ∆ + ∆ +


= + + + +


 

Recall from Chapter II, if our numerical method is of order ( )pO h , then as we reduce the 

step size by a factor of two, the estimated error of the method is reduced by a factor of 

2 p . Therefore, for any p-th order method, if we let p M=  and h t= ∆ , then for RK4, 

which has global truncation order of 4( )O t∆ , 

4 4

 .                                               (3.8)
2 16
t tO O

   ∆ ∆  =    
     

 

In general, both multi-step and multi-stage methods have their advantages and 

disadvantages. Higher order multi-step methods require more use of past values, whereas 

multi-stage methods require more calculations per step. For RK methods, the main 

computational effort is in the evaluation of the right hand side (RHS) function itself [10]. 

For example, in the second-order RK methods, the local truncation error is 2( )O t∆ , 

where the cost is two functional evaluations per step, given there are two stages within 

the step [10]. Likewise, the fourth-order RK methods require four functional evaluations 

per step, as there are four stages, and the local truncation error is 4( )O t∆ . However, this 

pattern does not hold for all RK methods. In general, Table 3 shows “the relationship 

between the number of evaluations per step and the order of the local truncation 

error” [10]. 
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Number of Evaluations / Step and Order of the Local Truncation Error 

Evaluations per step        2              3              4           5 n≤ ≤7          8 n≤ ≤9        10 n≤  

Best possible local 

truncation error         2( )O t∆     3( )O t∆      4( )O t∆       1( )nO t −∆       2( )nO t −∆      3( )nO t −∆  

Table 3.   Evaluations per Step and Truncation Error  

Given the result from Equation (3.8), it is easy to see why a higher order RK 

method might be preferred to a lower-order RK, if we are concerned with accuracy; 

however, Table 3 shows that in comparing higher-order RK methods ( 5n ≥ ) with lower-

order RK methods ( 4n ≤ ), that the lower-order methods may instead be preferable to 

higher-order. In other words, although the higher order methods allow for a larger time 

step and improved local truncation error, the overall computational cost increases 

significantly. Therefore, depending on the problem being solved, we may be satisfied 

with using a 3rd or 4th order RK method, which requires a slightly smaller time step, 

compared to say, an 8th order method; however, the overall number of functional 

evaluations per step is reduced drastically. There is always a tradeoff between choosing a 

method that has the best possible local truncation error, yet minimizes cost. 

For our analysis, we will focus only on explicit, second-order methods; therefore, 

let us now look at the stability of RK2, which will be our primary time-integration method 

for evaluating the IVP in Chapter I. If we rewrite Equation (3.7) in the following way: 

( )1 ( ) ( ( ))  ,                           (3.9)
2

n n n n ntq q F q F q tF q+ ∆
= + + + ∆  

then, after applying Von Neumann stability analysis to Equation (3.9), we find the 

subsequent representation for z, such that, 

2 2 2 2 0 .                                             (3.10)iz z e θ+ − + =  

Here, Equation (3.10) is quadratic; therefore, we must now solve for the roots of the 
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function, and then plot the real versus imaginary values of z, for 0 2θ π≤ ≤ . Figure 8 

displays these results, where we now see the stability region for Equation (3.9) assuming 

no spatial error. 

 

 

Figure 8.   RK2 Stability Region   

Although these plots are useful on their own, it is more beneficial if we overlay 

each method’s stability region, in order that we may compare AB2, BDF2, and RK2 

against each other. Figure 9 shows the stability plot for each of these methods, in addition 

to first-order Euler, where we can easily see that RK2 has a significantly larger region of 

stability in comparison to the other three explicit methods. Also, this plot visually 

supports the fact that RK2 is stable for much larger time-step values than the other three 

methods. 



 35 

 

Figure 9.   Stability Regions for AB2, BDF2, and RK2 

C. SINGLE-RATE RESULTS ON UNIFORM GRID  

Let us now look at the numerical results for solving our IVP on a uniform grid, 

using the multi-step and multi-stage time-integrators mentioned in sections A and B. 

First, if we choose our initial condition to be a Gaussian function of the form: 

2

2
( )
2 (3.11)( )  ,                                             
x b

cq x ae
− −

=  

where a, b, and c are real positive constants, such that, 

- a:  height of the curve’s peak, 

- b:  center position of curve’s peak, 

- c:  width of bell curve,  
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then we know the general graph of this function is a symmetric bell curve that has tail 

ends, which fall off to positive and negative infinity. Figure 10 shows three Gaussian 

functions with varying parameters to demonstrate how each parameter affects the shape 

of the curve. 

 

Figure 10.   Gaussian Plot for Various Parameters 

For our analysis of the IVP, we will set the domain to be { | 1 1}x x∈ − ≤ ≤ . 

Additionally, we will impose periodic boundary conditions, such that the solutions at the 

right and left boundaries are equal to each other as the 1-D wave equation propagates to 

the right in time, for 0 1t≤ ≤ , and x
ct σ ∆∆ = , where the time-step is a function 

determined by the Courant number, wave speed and grid spacing. For the following 

results, we will set the wave speed to be constant at 2c = , σ  will vary depending on the 

stability of the numerical method and the grid spacing, x∆ , will be determined by the 

number of grid points used to evaluate the solution for a particular time-step. 
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1. Explicit RK2 Method 

Let us first rewrite our IVP, Equation (2.9), 

,          0,q qc c
t x

∂ ∂
= − >

∂ ∂
 

using Equations (2.5) and (3.7), where (2.5) is a second-order centered difference 

approximation for the continuous spatial derivative, and (3.7) is the RK2 time-integration 

method. Here, we know that if 

21 1( ) ( ),    for   2
2

n n n
n i i i
i

q q qF q c c O x c
x x

+ −∂ −
= − = − + ∆ =

∂ ∆
, 

then, substituting into (3.7) we find: 

( )

( )

( ) ( )

( )

1 1 1

2 1 1 1

1 2 1 2

1
1 1 1 2

( )

( )

                           

1
2

n n n
i i i

n n n n
i i i i

n n n n n n
i i i i i i

n n n n n n
i i i i i i i

tk tF q q q
x

tk tF q k tF q q q
x

t t tq q q q q q
x x x

t t tq q q q q q q
x x x

+ −

+ −

+ + − −

+
+ − + +

∆
= ∆ = − −

∆

∆ = ∆ + = ∆ − − ∆ 
∆ ∆ ∆ = − − − − + − ∆ ∆ ∆ 

∆ ∆ ∆
= + − − − − −

∆ ∆ ∆
( ) ( )

( ) ( )

1 2

2

1 1 2 22      2 .
2

n n n n
i i i

n n n n n n
i i i i i i

tq q q
x

t tq q q q q q
x x

− −

+ − + −

 ∆  − + −  ∆  
∆ ∆

= − − + − +
∆ ∆

 

Therefore, we now have the following expression for RK2 using a second-order centered 

difference stencil in space: 

( ) ( )
2

1
1 1 2 22 2 .                     (3.11)

2
n n n n n n n
i i i i i i i

t tq q q q q q q
x x

+
+ − + −

∆ ∆
= − − + − +

∆ ∆
 

 If we fix our initial parameters to be 0.5σ =  and 0.02x∆ = , then when we 

approximate Equation (2.9) using Equation (3.11), Figure 11 shows a graphical 

comparison between the exact solution and the numerical FD solution at times t = 0.025, 

0.50, 1.0, and 4.0.  
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Figure 11.   Numerical vs. Exact Solution for RK2 using 2nd Order CFD with x∆  = 0.02 

At time t = 0, the numerical solution (red curve) is set equal to the initial 

condition (blue curve), and as time increases, the initial condition (Gaussian function) 

begins to propagate to the right. From Figure 11 we can clearly see that after one 

revolution, where t = 1, the difference between the numerical solution and initial 

conidtion is approximately 0.0249, and at t = 4, the difference is 0.0986; where these 

norm values are computed using the 2L  norm, which was defined in Chapter II as 

1
2

2

2
1

N

i
i

q q
=

 ≡  
 
∑ , 

such that the difference between the numerical solution, n
iq , and exact solution, n

iφ , is 
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1
22

2
1

,   for   1, 2,3,...
N

n n n n
i i i i

i
q q nφ φ

=

 − ≡ − = 
 
∑  

It is easy to see from Figure 11, that the numerical solution, defined by the 

parameters above, quickly loses accuracy as time increases, such that both the dispersion 

and dissipation errors are evident. The dispersion error is a result of the numerical 

solution evolving slower in time compared to the real solution, while the dissipation error 

is the difference in the height of the numerical solution to that of the real solution. 

Therefore, since t∆  is a function of the Courant number, wave speed and grid spacing, 

we have a few options to take in order to determine if we can achieve better results for 

solving (2.9) using (3.11): we can increase or decrease the number of grid points used to 

evaluate the solution (i.e., make x∆ smaller / larger), modify the wave speed, choose a 

different Courant number, or a combination of the three, so long as we ensure that the 

stability of (3.11) is maintained. 

Let us look at the results for only changing x∆ . If we change the number of grid 

points from 100 to 400, then x∆ = 0.005, and our time-step now becomes, 0.00125t∆ = , 

compared to the previous time-step value of 0.005t∆ = , for a fixed Courant number of 

0.5σ = . Running the same simulation again with RK2 for 0 4t≤ ≤ , we notice from 

Figure 12 that the numerical solutions are more accurate when using 0.005x∆ = , as 

opposed to 0.02x∆ =  for 2t ≤ ; however, for 2t > , the solution not only loses accuracy, 

but is unstable for the given parameters. Therefore, we see that although the initial 

computations using a finer grid provide better results for 2t ≤ , the end result is worse.  

In fact, what we find is that the numerical solution is unstable for RK2 using a 

fixed Courant value of 0.5σ = and a x∆ =0.005. Additionally, the computational cost 

also increased as we computed values at 400 points versus only 100 for each time-step. 

Initially, this did not make sense as I assumed using a finer grid spacing and smaller time 

step would produce better results. However, what we find is that as we refine the grid 

spacing smaller and smaller, the time step value needed to ensure stability must also get 

smaller.  
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Figure 12.   Numerical vs. Exact Solution for RK2 using 2nd Order CFD with x∆  = 0.005 

 Therefore, we need to look at the other parameters, namelyσ , and find a solution 

that achieves the accuracy we desire, while simultaneously reducing the computational 

cost and ensuring stability. Furthermore, the results above show the importance of 

carrying out the simulation for increasing time. If we had stopped the simulation after 

only one or two revolutions, we would have assumed the solution for RK2 using the finer 

grid for the parameters chosen was better, when in fact we have shown the opposite. 

Regardless, neither solution is desirable. 

Instead, let us look at the solution to Equation (3.11) by fixing the grid spacing 

and only varying the Courant value. If we now plot the numerical solution using the 

Courant value and estimated error, we find that as the Courant value decreases, the 

estimated error of the solution decreases. These results are shown in Figure 13, and they 

confirm Equation (3.8), which shows that as the time-step is reduced by a factor of two, 
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the estimated error of the method is reduced by a factor of 2 p . Here, RK2 is a second 

order method; therefore, as t∆  is reduced by half, the estimated error should decrease by 

a factor of four. Although we are plotting against the Courant value, remember that  

tc
x

σ ∆
=

∆
, 

therefore, there is a direct correlation between σ  and t∆ , such that as σ  gets smaller, 

t∆  must also get smaller, given a fixed wave speed and grid spacing.  

 

 

Figure 13.   Estimated Error vs. Courant for RK2 using 2nd Order CFD with x∆  = 0.02 

From Figure 13, we notice that the estimated error begins to increase for Courant 

values of 1σ ≤ . What we find, is that this is not due to the time-integrator, but rather the 

spatial error introduced by our approximation of the spatial derivative. Here, we used 

Equation (2.5), which is the second-order, centered difference stencil. For our purposes, 

we are not as concerned with the spatial error, and only want to focus on the errors 
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produced from the various time-integration methods. Therefore, if we use a spatial 

discretization stencil with higher-order than the order of our time-integrators, we will 

hopefully be able to better analyze the solutions for decreasing time-steps or smaller 

Courant numbers. For that reason, let us now modify the numerical method so that we 

instead compute the spatial derivative using Equation (2.8),   

42 1 1 28 8 ( )
12

n n n n n
i i i i iq q q q q O x
x x

− − + +∂ − + −
= + ∆

∂ ∆
, 

which is the 4th order, centered difference stencil constructed in Appendix B.  

If we again look at the estimated error versus Courant value plot using RK2 in 

time and Equation (2.8) in space, then we find the following results, which are shown in 

Figure 14. 

 

 

Figure 14.   Estimated Error vs. Courant for RK2 using 4th Order CFD with x∆  = 0.02 
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From Figure 14, we now notice that our estimated error has improved drastically for 

decreasing values of σ ; however, our solution becomes increasingly unstable for values 

of σ  approximately larger than 0.75. Figure 14 clearly demonstrates the usefulness of 

higher-order spatial discretization methods when analyzing lower-order time integrators, 

such that we are better able to see the convergence rates of the time-integrator, as well as 

the estimated error. For example, both Figures 13 and 14 show the estimated error for the 

entire numerical method. Therefore, we notice that the spatial error dominates in Figure 

13, so that we are unable to see the temporal errors; whereas in Figure 14, the spatial 

error is not readily seen until we reach a Courant value of approximately 0.1, thereby 

allowing us to more accurately analyze the temporal error for decreasingσ . 

If we now vary both the grid spacing and Courant values, the results are shown in 

Figure 15. Here we find, that as the grid size decreases, the range of σ  values must also 

decrease in order to maintain stability. This plot also demonstrates the trade-off between 

accuracy and efficiency, such that as x∆  decreases, the more accurate the RK2 solutions 

are to the exact solution; however, the number of computations per step must increase. 

 

 

Figure 15.   Error vs. Courant for Various x∆  
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Figure 15 is also useful in helping to better explain the previous RK2 results, which were 

shown in Figures 11 and 12. Since we were using a fixed Courant value of 0.5 and only 

varying x∆ , we notice that the blue curve supports the results shown in Figure 11, as we 

found that although the method gradually incurred both dissipation and dispersion errors, 

it was still stable. However, for the same Courant value of 0.5, we notice that the green 

curve represents the results shown in Figure 12, such that Figure 15 supports the fact that 

for x∆ = 0.005, the numerical method is unstable.  

Similar to Figure 15, it is also useful to plot the time-step, t∆ , versus the 

estimated error of the numerical method. In Figure 16, we notice the areas along each 

curve, where the slopes are approximately equal to 2. It is within these regions that for a 

particular Courant value and spatial grid size, that the overall numerical method RK2 is 

stable and 2nd order accurate. The analytical proof that RK2 is second-order accurate, 

regardless of the spatial discretization method, can be found in Appendix C. 

 

 

Figure 16.   Error vs. Time-step for Various x∆  
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 Figure 16 is also helpful, as it clearly shows the relationship between the time-

step size and estimated error, as opposed to the Courant value. It is easily seen that for the 

given spatial grid sizes, the estimated error is reduced as x∆  decreases; however, it is at 

the cost of a much smaller time-step, which requires more computational time.  

In this chapter, we presented three different time-integration schemes: two multi-

step (AB2 and BDF2), and one multi-stage (RK2). Therefore, let us also present the results 

solving our IVP for all three methods.  

 

 

Figure 17.   Error vs. Time-step for RK2, AB2, and BDF2 

From Figure 17, we notice that each of the three time-integrators converges to the actual 

solution at the expected rate of approximately two as each method is 2 4( , )O t x∆ ∆ . We 

also notice that RK2 is stable for larger time-step sizes, which supports the stability 

analysis plots shown in Figure 9. Therefore, given the above results, we will use RK2 as 

the time-integration scheme of choice for the remainder of this thesis and in developing 

our multi-rate method in Chapter IV. 
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IV. MULTI-RATE METHODS 

In this chapter, we focus on the development of a second-order multi-rate 

partitioned RK2 method (MPRK2), which uses a series of convex combinations of Euler 

steps [13]. To construct this method, we begin by introducing a non-uniform grid, where 

we must generalize the spatial derivative stencils developed in the previous chapters. 

A. NON-UNIFORM GRIDS 

In Chapters II and III, we solved our IVP using second and fourth-order accurate 

FD spatial discretization methods that were analyzed on a uniform grid. However, as we 

begin to construct our multi-rate time-integration method, we must now introduce a non-

uniform mesh in both space and time. For now, we will simplify the problem to only non-

uniformity in space. 

 

 

Figure 18.   Non-uniform Grid in Spatial Domain 
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Using Figure 18, we notice that this grid is uniform in time for constant t∆ , yet 

non-uniform in space. Here, we let every grid point to the left of ix , for all time, be a 

distance of x∆  apart, while all points to the right of ix  are a distance of 2x∆  apart. It is 

important to note, that in general, we can arbitrarily vary the distance between any two 

points within the non-uniform grid, and that Figure 18 is only one graphical example of 

how we may choose to define our grid space. Furthermore, this figure demonstrates that 

if we now want to build a discrete approximation to the spatial derivative of our IVP, 

then we will not be able to use the spatial stencils developed in Chapter II and Appendix 

B, as they all rely on a single x∆ .  

For example, Equations (2.5) and (2.8),  

21 1 ( )
2

n n n
i i iq q q O x
x x

+ −∂ −
= + ∆

∂ ∆
 

42 1 1 28 8 ( )
12

n n n n n
i i i i iq q q q q O x
x x

− − + +∂ − + −
= + ∆

∂ ∆
, 

are the second and fourth-order centered difference stencils, respectively, which we used 

to approximate the spatial derivative of our IVP in Chapter III. Let us now look at how to 

construct a general expression for these stencils using the grid points at time, nt , 

referenced in Figure 18. We will begin with the second-order centered difference stencil, 

such that we want to use the solutions at 1 1,  and n n n
i i iq q q+ − , to approximate the first-order 

derivative of n
iq  with respect to x. Therefore, we now write the spatial discretization as a 

weighted sum of these solutions, where 

1 1  .                                           (4.1)
n

n n ni
i i i i i i

q q q q
x

α β γ+ −

∂
= + +

∂
 

We will begin with using TSE about n
iq , such that, 
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If we now substitute these expansions into Equation (4.1), then we achieve the following 

expression: 
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Since we want an expression for the second-order, centered difference stencil, we 

require the following equalities: 

1 1

2 2
1 1

                                                                   0

( )                            ( )               1

( ) ( )                            
2 2

i i i

i i i i i i

i i i i
i i

x x x x
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+         0  ,=

 

which can also be written as the following matrix problem, 

( ) ( )
2 2

1 1 1 0
0 1

0
0

2 2

i

p m i

i
p m

α
β
γ

 
 

    
    ∆ ∆ =           ∆ ∆  

 

, 
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where we let 1( )p i ix x+∆ = −  and 1( )m i ix x −∆ = − . After solving for the coefficients using 

Cramer’s rule, we find the following expressions: 

( )2 2 22

2 2 2 2 2 2,       ,       m p pm
i i i

p m m p p m m p p m m p

α β γ
− ∆ −∆ −∆∆

= = =
∆ ∆ + ∆ ∆ ∆ ∆ + ∆ ∆ ∆ ∆ + ∆ ∆

. 

Now, if we substitute the values for the coefficients ,  ,  and i i iα β γ into Equation (4.1), we 

find a general expression for the spatial derivative, such that 

( ) ( )
2 2 2 2

1 1
2 2  ,              (4.2)

n n nn
m i m p i p ii

p m
p m m p

q q qq O
x

+ −∆ − ∆ −∆ −∆∂
= + ∆ ∆

∂ ∆ ∆ + ∆ ∆
 

which depends on the solution at three points with two distinct ∆  parameters.  

In order to verify that Equation (4.2) is the correct general formula for a second-

order, centered difference stencil, then if we assume that both ∆  parameters are equal 

(i.e., uniform grid), we can easily show that when p mx∆ = ∆ = ∆ , then Equation (4.2) 

simplifies to Equation (2.5), 

21 1 ( )
2

n n n
i i iq q q O x
x x

+ −∂ −
= + ∆

∂ ∆
, 

thereby proving that Equation (4.2) is a second-order accurate stencil.  

Likewise, if we want to construct a general, fourth-order centered difference 

stencil, then following the same methodology as shown for developing Equation (4.2), 

we now find that the spatial derivative becomes 

2 1 1 2  ,                             (4.3)
n

n n n n ni
i i i i i i i i i i

q q q q q q
x

α β γ δ η+ + − −

∂
= + + + +

∂
 

where after using TSE about n
iq , we achieve the following matrix problem: 
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such that,  
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Note that the general expression for the matrix above is  
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 , 

 

where k is the order of the method, such that k is even. 

After solving the matrix problem, we find the following expressions for the 

coefficients: 
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. 

Therefore, if we substitute (4.3.1) - (4.3.5) into (4.3), we achieve the fourth-order, 

centered difference stencil we desired, such that 

2 1 1 2 1 2 1 2+ ( ) .                  (4.4)
n

n n n n ni
i i i i i i i i i i m m p p

q q q q q q O
x
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= + + + + ∆ ∆ ∆ ∆

∂
 

Notice, if 1 1 2 2 1 2,  ,  and 2p m p m p p∆ = ∆ ∆ = ∆ ∆ = ∆ , then we can easily show that Equation 

(4.4) is equivalent to Equation (2.8), such that 

42 1 1 28 8 ( )
12

n n n n n
i i i i iq q q q q O x
x x

− − + +∂ − + −
= + ∆

∂ ∆
. 

Let us return to our IVP , where we now solve for solutions using the non-uniform 

grid in Figure 18. If we use RK2 as our time-integrator and Equation (4.2) as the spatial 

derivative, then we achieve the following results, which are shown in Figure 19: 



 53 

 

Figure 19.   Non-uniform RK2 Results: L2 Error Norms vs. Courant Value using 2nd Order 
Centered Finite Difference Method 

From Figure 18, we notice that our domain is partitioned into two sub-domains, such that 

the left sub-domain represents the course grid and the right sub-domain corresponds to 

the fine grid. Within Figure 19, we demonstrate that if we fix the fine grid, 0.02finex∆ = , 

and vary  from 0.02 to 0.08coarsex∆ , then as the width of coarsex∆  increases, the overall 

estimated error of the numerical method increases. We also notice that when we set 

coarse finex x∆ = ∆ , we return to a uniform grid, such that the errors are consistent with the 

results shown in Chapter III, specifically, Figure 13. This makes sense, as we should not 

expect to achieve better results using the non-uniform grid, compared to the uniform grid, 

provided the highest resolution, finex∆ , within both grids is equivalent. 

It is also important to analyze the 2L  error norms of both the uniform and non-

uniform results, such that we should expect the same convergence rates. For example, we 

have shown for the uniform grid, that if our time-integration method is on the order of 
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2( )O t∆ , then as we reduce the step size by a factor of two, the estimated error of the 

method is reduced by a factor of 2 p , such that for RK2, where 2p = , we know  

2 2

2 4
t tO O

   ∆ ∆  =    
     

. 

However, when solving on the non-uniform grid, the time-step is now determined by the 

highest spatial resolution, in order to ensure stability of the overall method; therefore, t∆  

is a function of finex∆ . Figure 20 displays the 2L  error norms for our uniform and non-

uniform grid results using RK2 and Equation (4.2). From this figure, it is easily seen that 

for the uniform grids, as x∆  decreases by half, the estimated error of the method 

decreases by a factor of four; likewise, for the non-uniform grids, as finex∆  decreases by 

half, where 2coarse finex x∆ = ∆ , the overall method also decreases by a factor of four. Figure 

20 also verifies that the non-uniform grid results achieve larger errors than the uniform 

grid, when both methods use the same high resolution. For example, the non-uniform grid 

using 0.02 and 0.04fine coarsex x∆ = ∆ = , achieves better results than the uniform grid with 

0.04x∆ = ; however, is worse than the uniform grid with 0.02x∆ = .   

 

 

Figure 20.   Uniform vs. Non-uniform RK2 Results 
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It is also helpful to analyze the estimated errors of the uniform vs. non-uniform 

RK2 results, using the degrees of freedom of the spatial mesh. Therefore, Figure 21 

demonstrates that as the degrees of freedom of the numerical method increase, the 

estimated error decreases, such that the uniform grid will achieve better results than the 

non-uniform grid, given an equivalent number of points. This is the price one must pay 

for using the geometric flexibility of non-uniform grids, which must be used to yield 

more efficient solutions. 

 

 

Figure 21.   Estimated Error vs. Number of Points for Uniform and Non-uniform RK2 
Results 

Although Figures 20 and 21 are helpful in comparing the uniform and non-

uniform meshes, we notice that Figure 20 primarily shows the spatial error for the overall 

numerical method, which is on the order of 2 2( , )O t x∆ ∆ . Therefore, in order to better 

analyze the temporal errors, we will now use RK2 in combination with Equation (4.4), the 

general fourth-order centered difference stencil, to solve our IVP, such that the overall 
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numerical method is on the order of 2 4( , )O t x∆ ∆ , when we set coarse finex x∆ = ∆ . Figure 22 

displays these results, where we are now able to more accurately analyze the temporal 

errors for RK2. 

 

 

Figure 22.   Uniform vs. Non-Uniform RK2 Results using a 4th Order CFD Stencil 

From Figure 22, we clearly see that the uniform results are equivalent to those found in 

Figure 16, and as we expected, introducing the fourth order centered difference stencil in 

space, has allowed us to view the temporal errors more effectively. We also notice from 

Figure 22, that our single-rate RK2 method performs as we expected. For example, just as 

we found in Figure 20, the results above show that for a given non-uniform grid, the 

relative errors are greater than the uniform grid errors, when both methods use the same 

high resolution. Since we have validated that our general second and fourth-order spatial 

schemes, in conjunction with our single-rate RK2 method are both consistent and 

accurate, let us now look at how to develop our multi-rate, partitioned, RK2 time-

integrator. 
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B. MULTI-RATE GRID DEVELOPMENT 

In the previous section we looked at the single-rate RK2 results on a non-uniform 

grid, such that the non-uniformity only existed within the spatial domain, as was shown 

in Figure 18. Let us now extend this non-conforming grid to both space and time, where 

Figure 23 displays a graphical representation for this non-uniformity. 

 

 

Figure 23.   Non-conforming Grid in both Space and Time 

From Figure 23, we now notice that the non-uniformity within the temporal domain will 

present a problem in constructing our finite difference representation of the continuous 

spatial derivative for specific points. Therefore, if we imagine that every grid point to the 

left of point “i” in Figure 23 is of dimension x∆ , and that every grid point to the right of 

point “i” has dimension 2x∆ , then it can be easily seen, that if we want to represent the 

spatial derivative of our IVP using the general fourth-order centered difference stencil 

developed in Chapter IV, that we will have no issues in constructing this stencil for grid 

points to the left of “i,” or right of 1i + , assuming that the grid extends infinitely in both 
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directions, thereby excluding any boundary conditions. However, we notice in Figure 24 

that as time increases, we lack knowledge of information at every half time-step, that is 

necessary for building the fourth-order centered FD stencil for grid points “i” and 1i + . 

These locations are indicated by red markers in Figure 24. 

 

 

Figure 24.   Lack of Information Needed to Build a 4th Order CFD Stencil  

Let us now introduce some terminology, such that we will commonly refer to the 

coarse region within our spatial domain as the “slow region,” and the fine region within 

the same domain as the “fast region,” where the grid point located on the boundary 

between these two regions is an “interface point.” Let us also assume from this point 

forward that when we refer to a FD stencil, that the reference stencil is the fourth-order 

centered FD stencil found in Equation (4.4) with weighted coefficients defined by 

Equations (4.3.1) – (4.3.5). From Figure 24, we notice that in order to represent the 

spatial derivative at grid points “i” and 1i + , that we must make an approximation for the 

values at each half time-step where we do not have any information.  
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Using the information depicted in Figure 24, if we choose to let the values at grid 

points 
1
2 

 1,
n

ix t +
−  and 

1
2 

 2 , n
ix t +
−  be equal to  

 1,
n

ix t−  and  
 2 , n
ix t−  respectively, then it can be 

easily shown using TSE, that this approach will reduce the order of accuracy of the 

overall method. Likewise, if we choose to let these same points be equal to  1
 1,

n
ix t +
−  and 

 1
 2 , n
ix t +
− , then this naïve approximation will also reduce the overall order of accuracy. 

However, if we know how to compute the information for grid points 1i −  and 2i −  at 

time levels  nt  and  1nt + , then a better approach would be to take an average of the two 

values and use this information as placeholders for approximating our derivative, such 

that we can easily show using TSE, that this averaging approach will maintain the desired 

level of accuracy, such that our FD scheme will remain 4( )O x∆ . 

For our particular IVP, we are concerned with the boundary conditions, given that 

we enforce periodicity at these boundaries. Therefore, in order to simplify the problems 

associated with a non-conforming grid in both space and time at these boundaries, let us 

define a new grid that consists of three sub-domains (coarse / fine / coarse). Figure 25 

shows a graphical representation of this grid, where the first and third sub-domains (slow 

regions) consist of same-sized elements, and the second sub-domain (fast region) consists 

of elements half the size of the slow regions. 

 

 

Figure 25.   Non-conforming Grid with Three Sub-domains 

This grid is different from the two sub-domain grid in Figure 24, in that we now have two 

interfaces which we will define as a slow/fast interface and a fast/slow interface, and can 

be seen in Figure 26. In addition, we also have what we will define as “buffer regions.” 
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These buffer regions exist at each interface, such that the size of a particular buffer region 

is dependent upon the grid points required to construct the FD stencil. First, we must 

construct slow and fast grids, which will be used to compute the slow and fast numerical 

solutions at a given time level. From Figure 26 we notice that the buffer regions are 

defined as the intersections of the slow and fast grids. Note, it is important to distinguish 

between the overall coordinate grid and the three sub-grids, as both slow grids in domains 

1 and 2, each share grid points with the fast grid. Notice also that the fast and slow grids 

identified in Figure 26 are not the same as the fast and slow sub-domains shown in 

Figure 25.   

 

Figure 26.   Interfaces and Buffer Regions for Non-Conforming Grid 

Now that we have identified the difference between the slow and fast sub-

domains, as well as the slow and fast grids, we must also define where our actual 

numerical solution will exist, such that in order to compute the entire solution at a given 
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time level, we require both the fast and slow solutions, where the individual solution at 

any given grid point “i,” is located in one of three solution regions: purely fast, purely 

slow, or at an interface. However, the fast solution will take care of the interface solution. 

Let us refer to Figure 27 to see what we mean. From this figure, we notice that the fast 

solution is computed on the grid points within the fast sub-domain (including interface 

points) defined in Figures 25 and 26, whereas the slow solution is computed using the 

grid points within the two slow sub-domains minus the interface points.  

 

 

Figure 27.   Computing a Fast or Slow Solution in the Buffer Region 

For example, if we want to compute the FD fast solution at the first interface point 

located within the slow/fast buffer region, then we require information from the 

neighboring grid points, such that if the interface point is grid point “i,” then we also 

need the values at grid points 2,  1,  1,  and 2i i i i− − + + , such that the values at 

2,  and 1i i− −  will come from the slow solution and the values at 1,  and 2i i+ +  will 

come from the fast solution. However, as we saw in Figure 24, the slow solutions are 

computed on the slow domain, such that no information is stored at every half time-step. 

Therefore, let us now look at how to construct the multi-rate partitioned RK2 (MPRK2) 

time-integrator that will help us overcome this issue.   
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C. MULTI-RATE PARTITIONED RK2 METHOD (MPRK2) 

As we begin to construct our MPRK2 scheme, we want to ensure that all of the 

previous properties, such as consistency, stability and accuracy, as discussed in Chapter 

III also hold for this time-integration technique. According to [13], if we consider the 

second order, Runge-Kutta method, RK2, defined by the Butcher tableau as  

( )
( )

1

2 2 1

1
1 2

( , ) 0 0 0
: ,                  1 1 0   ,                 (4.5)

1 11 2 2
2

n n

n n

n n

k tF t q

RK k tF t t q k

q q k k+


 = ∆
 = ∆ + ∆ +

 = + +


 

then using the following compact notation for explicit Euler steps,  

( , ) ( ) ( , ) ,                                        (4.6)t q q t tF t qε ∆ = + ∆  

as defined in [13], we can rewrite the above RK2 method as a linear combination of Euler 

steps, such that we can guarantee that the above method will strongly preserve stability. 

This is known as a strong stability preserving (SSP) method, such that SSP time-

integrators are methods that ensure a certain norm of the solution is bounded by the same 

norm of the previous time level, where 

1n nq q+ ≤ . 

We notice that the RK2 scheme (4.5) above is the same as Equation (3.9), where 

we have already proven in Appendix C that this time-integrator is indeed second order 

accurate, and from Chapter III, that the above RK2 method, in conjunction with our 

fourth-order FD stencil, is consistent with the continuous PDE of our IVP. Furthermore, 

we analyzed the stability of this RK2
 method in the previous chapter using Von Neumann 

Stability Analysis. Therefore, if we now substitute a linear combination of Euler steps as 

defined by (4.6), into the above RK2 method, we find from [13]: 
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where if the forward Euler method is SSP under its specific CFL time-step restrictions, 

then Shu and Osher [14] showed that higher-order methods constructed as linear 

combinations of forward Euler steps will also be SSP.  

Now that we have rewritten the RK2 method as  

1 (1)1 1(0, ) ( , )                                        (4.7)
2 2

n nq q t qε ε+ = + ∆  

the intent is to use (4.7) to develop both a slow and fast RK2 scheme to be used within the 

slow and fast domains of our three sub-domain grid developed in the previous section. 

We look again to the works by Constantinescu and Sandu [13], where they show how we 

can extend the above RK2 base method to a second-order multi-rate partitioned Runge-

Kutta (MPRK) scheme, where the MPRK scheme can be applied to multiple partitions, 

with “m”  denoting the ratio between the time-steps associated with the fast and slow sub-

domains on the same time level. 

For our analysis, we consider only the case where our grid is refined at most once, 

such that the grid consists of at most two levels, which is seen in Figures 25 - 27. 

Additionally, for a two level grid, one level corresponds to the fast sub-domain, while the 

other level is associated to the slow sub-domain, such that the fast domain is refined at a 

two-to-one ratio. Therefore, we find that if the slow domain has elements of length x∆ , 

than the fast domain will have length 2x∆ . Furthermore, the ratio between the time-

steps associated with the fast and slow sub-domains is also two-to-one, such that 2m = . 

Let us now look at Figure 28, where we find the Butcher tableau for 2m = , such 

that the base method as defined by (4.5) can be rewritten for the slow and fast methods, 
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where the fast and slow methods weight coefficients are 1/ mb  repeated m times. 

Additionally, the slow method repeats the base methods stages m times with a time-step 

of t∆ , while the fast method must perform m steps of the base method with a time-step of 

t m∆ . Furthermore, [13] shows how this technique of partitioning a base RK method can 

be extended from 2m =  to arbitrary m’s. 

 

Figure 28.   Butcher Tableau for RK2 Method and its Associated Slow and Fast RK2 
Equivalents 

We have already seen how we can rewrite the base RK2 method using a linear 

combination of Euler steps. Therefore, let us now represent the slow and fast methods 

shown in Table 4 [13] using this same approach, where the reader is encouraged to go to 

[13] for proof of conservation and accuracy of these methods.  

Looking at Table 4, we notice that each line in the table is part of an iterative 

process for computing the solutions within each sub-domain of the grid. For example, 

 and n n
F Sq q  are the initial solutions on both the slow and fast sub-domains, which initially 

correspond to the exact solution at time nt . Therefore, once we initialize the solution 

vectors  and n n
F Sq q , we have all the information needed to move to the second line in the 

table, and so on. Furthermore, the sequence in which each solution vector is computed, 

resolves the issue for how to compute the average value for grid points within the slow 

domain, that are needed when evaluating our fourth-order FD stencil in the buffer 

regions. 
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      Fast Method                                 Slow Method                              Base Method 
                                                          (buffer region)                        

(1) (1)
2

     (slow region)     
        

                                                                                                  

( , , )                       ( , ,

n n n
F S S

n n nt
F F F S S S F S

q q q
q q q q t q qε ε∆= = ∆ (1)

(1*) (1) (1) (1*) (1) (1) (1*) (1)
2

(2) (1*) (2)1
2

)                      ( , )

( , , )                    ( , , )                  ( , )

( )                         

n n
S S

t
F F F S S S F S S S

n n
F F F S S

q t q

q q q q t q q q t q

q q q q q

ε

ε ε ε∆

= ∆

= = ∆ = ∆

= + =

(3) (2) (3) (2) (3) (1)
2

(3*) (3) (3) (3*) (3) (3) (3*) (1*)
2

( , , )                      ( , , )                    

( , , )                   ( , , )                  

n nt
F F F S S S F S S S

t
F F F S S S F S S S

q q q q t q q q q

q q q q t q q q q

q

ε ε

ε ε

∆

∆

= = ∆ =

= = ∆ =
1 (2) (3*) 1 (1*) (3*) 1 (1*)1 1 1 1 1

2 2 4 4 2( )                                   ( )n n n n n
F F F S S S S S S Sq q q q q q q q q+ + += + = + + = +

 

Table 4.   MPRK2 Algorithm Used to Simultaneously Solve the IVP on Both the Fast 
and Slow Sub-domains 

D. IMPLEMENTATION, RESULTS AND ANALYSIS 

The implementation of this iterative time-integration process is quite simple. In 

fact, the most difficult step in advancing each slow and fast solution is within the spatial 

discretization scheme. Therefore, once the basic finite difference framework has been 

established, as was shown in Section B of this chapter, the individual computations of 

each Euler slow or Euler fast solution is trivial.  

From Table 4, we notice that the base method is equivalent to Equation (4.7), and 

only requires knowledge of the solutions on the purely slow domain. However, the fast 

method performs four Euler-fast steps, where each step requires knowledge from the fast 

solution and the slow solution, if solving for grid points within the buffer region. 

Likewise, the slow method in the buffer region also requires information from the slow 

solution and fast solution. In other words, if a grid point lives in either a purely fast or 

purely slow region, then the base method will be used for the purely slow with only two 

Euler slow steps each of size t∆ , and the purely fast with four Euler fast steps each of 

size 2t∆ . It is only within the buffer region that the MPRK2 method requires either four 
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Euler-fast or four Euler-slow steps, each requiring information from both the fast and 

slow solutions to compute the RHS FD stencil. 

Let us now look at the results comparing the MPRK2 method against the single-

rate RK2 for solving our 1D, first order, advection equation with constant wave speed and 

periodic boundary conditions for the smooth Gaussian function on the non-conforming 

three sub-domain grid as defined in Figure 25.  

 

 

Figure 29.   RK2 vs. MPRK2 Convergence Results using Approximately 100 Degrees of 
Freedom 

From the above figure, we notice that both the MPRK2 and RK2 results converge 

on the order of 2( )O t∆  as 0t∆ → . However, for step-sizes t∆  approximately less 

than 310− , we begin to notice the spatial error from the fourth-order FD stencil. 

Furthermore, we also see that for a given time-step size, that the single-rate RK2 method 

is clearly more accurate than the MPRK2 for our particular choice of spatial element sizes 

 coarse 0.02x∆ =  and  fine 0.01x∆ = . In addition, Figure 30 shows a plot comparing the 
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efficiency of each method for these same parameters, such that for this size of problem, 

i.e., total number of grid points equal to 103, we notice that the single-rate RK2 method is 

also more efficient.  

Given these results, we now look to increase the number of points in the spatial 

domain, to determine if/when the multi-rate method will be more efficient. Before we do 

this, let us first look at the computational efficiency of each method, such that the reason 

for developing a multi-rate method in the first place was to have a more efficient 

numerical code capable of taking larger time-steps within the coarse regions and smaller 

time-steps within the fine regions of the spatial domain. As a result, the multi-rate method 

should indeed be more computationally efficient than a single-rate code that is restricted 

to taking a time-step dependant on the smallest grid size element in the spatial domain. 

 

 

Figure 30.   RK2 vs. MPRK2 Efficiency Results using Approximately 100 Degrees of 
Freedom 
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Both the single-rate and multi-rate methods are computed on the same grid, such 

that the multi-rate method solves for the purely fast and purely slow solutions using the 

same base method as the single-rate method, except for the purely slow solutions are 

capable of taking a time-step twice as large as the solution computed on the fast domain. 

Therefore, the only difference in computations is in the interface regions, which are 

typically small compared to the purely fast and purely slow regions. In other words, we 

truly have a multi-rate method, such that the slow regions do in fact use a step-size twice 

as large as the fast regions. 

Analyzing the efficiency of our multi-rate time-integration method, shows that the 

speedup of this method is equivalent to the ratio of the total work done for the single-rate 

scheme with its restrictive time-step value ( 2t∆ ), to the total computational work of the 

multi-rate scheme. Therefore, if we consider that the multi-rate method uses a step-size of 

2t∆  on the fast domain, including interface points, with F IN N+  grid points, and a 

step-size of t∆  on the slow domain with SN  grid points, then the multi-rate speedup is  

 ,                                        (4.8)
( ) ( / 2)

T

F I S

mNS
m N N m N

=
+ +

  

where 

 total number of grid points        number of purely fast grid points,
      ,                            number of interface grid points,
 m  =  number of fast steps,                

T F

F S I I

N N
N N N N

N

= =
= + + =

 number of purely slow grid points.S =

 

Furthermore, we find that since the total number of interface points min( , )I S FN N N , 

then for 4m = , Equation (4.8) simplifies to 

2  .                                                  (4.9)
2

T

F S

NS
N N

≈
+

 

Additionally, taking the limit of S as S TN N→ , such that 0FN → , then we find that  

0

lim 2,                                                      (4.10)
S T
F

N N
N

S
→
→

=  
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where Equation (4.10) shows that the maximum theoretical speedup of our MPRK2 

solution is equal to 2, regardless of the value of m. This makes sense as we have assumed 

that there is only one level of refinement at a two-to-one ratio. 

Below, Figure 31 shows the MPRK2 vs. RK2  wallclock time results versus time-

step size for  coarse 0.02x∆ =  and  fine 0.01x∆ = . Using (4.8), we find that the 

theoretical speedup should by approximately 4 percent for 103TN =  grid points. 

However, from this figure, we notice that there was no computational speedup. In fact, 

the single-rate method was still more efficient for the above parameters. Note, that the 

difference between the theoretical speedup and lack of computational speedup (in this 

case specifically) is most likely attributed to other coding inefficiencies, and not the 

MPRK2 scheme. Therefore, we expect to achieve close to the theoretical speedup as we 

increase the Degrees of Freedom (DoF). 

 

 

Figure 31.   RK2 vs. MPRK2 Effeciency Results (~100 DoF) 
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If we now consider  coarse 0.00125x∆ =  and  fine 0.000625x∆ = , then the total number 

of grid points is approximately 1600. Figure 32 displays the convergence results for these 

new parameters, such that we find the single-rate RK2 method is still more accurate for a 

given time-step size; however, Figure 33 shows that the MPRK2 method is now more 

efficient for any given time-step.  

 

 

Figure 32.   RK2 vs. MPRK2 Convergence Results using Approximately 1600 DoF 

Comparing the theoretical versus computational speedup for the newly defined 

parameters,  coarse 0.00125x∆ =  and  fine 0.000625x∆ = , then using Equation (4.9), 

we notice the following results where 1,603TN = , 5FN = , and 1,596SN = : 

2   1.996
2

T

F S

NS
N N

≈ ≈
+

. 

This shows that for the problem above, which has approximately 1,600 grid points, that 

the theoretical speedup should be approximately 2 (100% speedup). Using the data from 
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Figure 33, we find that the computational speedup we achieved using the MPRK2 scheme 

is approximately 1.67 (67% speedup). These results are significant, and are exactly what 

we hoped to achieve. In general, we have proven that the multi-rate method formulated in 

Table 4, is indeed more efficient than the single-rate RK2. Therefore, given that both the 

RK2 and MPRK2 time-integration schemes are on the order of 2( )O t∆ , the primary 

consideration one must make between the two methods is whether one desires a more 

accurate, but less efficient approximation, or a slightly less accurate, yet more efficient 

approximation to the IVP. In addition, let us also look at the estimated errors of each 

method versus the computational time, such that Figure 34 again shows that the single-

rate RK2 method is still more efficient overall in reaching a specific level of accuracy, 

than the multi-rate method.  

 

 

Figure 33.   RK2 vs. MPRK2 Efficiency Results using Approximately 1600 DoF 

Although Figure 33 demonstrates that for any given time-step the multi-rate 

method was computationally more efficient, the results in Figure 34 were initially 
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discouraging. However, it can be easily shown that the increased accuracy of the single-

rate method is attributed to the fixed non-uniform grid, whereas the multi-rate method 

loses accuracy due to this same spatial mesh. In other words, the single-rate method 

should indeed be more accurate as it solves the IVP everywhere on the fixed non-uniform 

grid with a single time-step associated with the smallest element within the spatial 

domain; whereas, the multi-rate method uses a time-step twice as large within the entire 

slow sub-domain. From the results above, we see that the slow sub-domain consisted of 

1,596 grid points out of a total 1,603 points. Although the initial grid was refined 

underneath the bell of the Gaussian curve, the right moving wave was rarely inside the 

fast region; therefore, the numerical solution lost accuracy as the wave moved from the 

fast region into the larger slow region. 

 

 

Figure 34.   RK2 vs. MPRK2 Efficiency Results using Approximately 1600 DoF 
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V. SUMMARY AND CONCLUSIONS 

Throughout this thesis we have shown how to use the method of finite 

differences, as well as a few explicit time-integration schemes, in order to construct a 

discretized form of our continuous, hyperbolic initial value problem, such that we were 

able to successfully solve this IVP numerically. In addition, we demonstrated how to use 

a linear combination of strong stability preserving, explicit forward Euler steps, in order 

to develop a 2nd order Runge-Kutta, multi-rate time-integration scheme, where the results 

from Chapter IV demonstrate that this MPRK2 method is indeed more computationally 

efficient than its equivalent single-rate RK2 method for any given time-step size. 

However, there is a great deal of research that must still be accomplished. 

Therefore, I recommend the following areas for future research: 

1) Incorporate an adaptive mesh refinement method in conjunction with the multi-

rate scheme. 

2) Increase the dimensionality of the problem. 

3) Vary the initial and boundary conditions. 

4) Develop other multi-rate time-integration schemes using AB2 or BDF2. 

Although the one-dimensional efficiency results comparing time-step sizes versus wall-

clock time were successful, as shown in Figure 33, it would be beneficial to see what 

impact incorporating recommendation (1) would have on improving the multi-rate 

accuracy results displayed in Figure 34. If the refined sub-domain within the spatial grid, 

Figure 25, were to adapt in time to stay under the bell of the Gaussian curve, then we 

should expect that the MPRK2 method would not only be more efficient for a given time-

step size, but also achieve a particular level of accuracy faster than the single-rate RK2 

method. 

The second recommendation is to increase the dimensionality of the problem 

being solved. If we are able to improve both the efficiency and accuracy of our numerical 

solution in only one-dimension, then it follows that an adaptive multi-rate time-
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integration scheme should also improve the speedup in higher dimensions. In addition to 

this recommendation, it would also be beneficial to incorporate other initial conditions, 

such that we should analyze how well the multi-rate method is capable of solving the 

same test case IVP with either a square wave or another Gaussian wave with source. 

Additionally, future analysis should be done on other PDE’s or systems of PDE’s. 

Although the 1st order advection equation was a good test case PDE, the linearized 

shallow water equations, Burgers’ equation, or even Maxwell’s equations, each allow for 

a more thorough analysis of how well the MPRK2 time-integration scheme compares to 

any other single-rate method. Furthermore, although it is important to analyze a particular 

multi-rate approach with its equivalent single-rate method, as was shown in this thesis, 

other multi-rate time-integration schemes should also be developed in order to compare 

each multi-rate approach against another.  
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APPENDIX A:  TSE OF EQUATION 2.1 

We begin the proof for Equation 2.1 by using Taylor series expansion (TSE) to 

expand each grid point about the point n
iq , such that for  

1 ( )
n n n
i i iq q q O x
x x

−∂ −
= + ∆

∂ ∆
 

We have the following TSE for 1
n
iq − : 

2 2
3

1 2

( )( , ) ( )
2!

n n
n n n i i
i i i

q q xq q x x t q x O x
x x−

∂ ∂ ∆
= −∆ = − ∆ + − ∆

∂ ∂
 

Substituting 1
n
iq − back into Equation 2.1, we then get 

2 2
3

2

2 2
3

22
2

2

( )

( ) ( )
2!

( ) ( ) ( )2!       ( )
2!

       ( )

n n
n n i i
i in

i

n n
i i

n n
i i

O x

n
i

q q xq q x O x
x xq

x x

q q xx O x q q xx x O x
x x x

q O x
x

∆

 ∂ ∂ ∆
− − ∆ + − ∆ ∂ ∂∂  =

∂ ∆

∂ ∂ ∆
∆ − + ∆ ∂ ∂ ∆∂ ∂= = − + ∆

∆ ∂ ∂

∂
= + ∆
∂



 

Therefore, we have shown that the backward difference formula for the first order 

partial derivative ( , )n
x iq x t  is equal to the exact solution plus an error term on the order 

of ( )O x∆ . 
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APPENDIX B:  4TH ORDER, CENTERED DIFFERENCE STENCIL 

We begin the construction of this FD stencil by first deciding which grid points 

we want to use, and then expanding about the point ( , )n
ix t  using TSE. 

 

 

Figure 35.   Uniform Grid in Space and Time 

From Figure 35, we can see that there are many grid points to choose from when 

building a new FD method. However, for the construction of this 4th order, centered 

difference stencil, we will use the following grid points: 

( ) ( ) ( ) ( )1 2 1 2,     ,    ,     ,    ,     ,    ,n n n n
i i i iq x t q x t q x t q x t+ + − −  

The TSE for each point are 

2 32 3
4

1 2 3

2 32 3
4

2 2 3

( ) ( )( , ) ( )                        ( .1)
2! 3!

(2 ) (2 )( 2 , ) 2 [(2 ) ]           ( .2)
2! 3!
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n n n i i i
i i i
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n n n i i i
i i i

q q qx xq q x x t q x O x B
x x x

q q qx xq q x x t q x O x B
x x x

+

+

∂ ∂ ∂∆ ∆
= + ∆ = + ∆ + + + ∆

∂ ∂ ∂

∂ ∂ ∂∆ ∆
= + ∆ = + ∆ + + + ∆

∂ ∂ ∂
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2 32 3
4

1 2 3

2 32 3
4

2 2 3

( ) ( )( , ) ( )                        ( .3)
2! 3!

(2 ) (2 )( 2 , ) 2 [(2 ) ]           ( .4)
2! 3!

n n n
n n n i i i
i i i

n n n
n n n i i i
i i i

q q qx xq q x x t q x O x B
x x x

q q qx xq q x x t q x O x B
x x x

−

−

∂ ∂ ∂∆ ∆
= −∆ = − ∆ + − + ∆

∂ ∂ ∂

∂ ∂ ∂∆ ∆
= − ∆ = − ∆ + − + ∆

∂ ∂ ∂

 

Once we have expanded each point, we then need to consider the following sum 

of equations 
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such that we must sum the columns of the system to determine what the coefficients A, B, 

C, and D must be. We do this by setting all columns containing the derivatives we do not 

want equal to zero. For example, we are building a FD stencil for the first derivative; 

therefore, the column containing the first partial derivative will be set equal to one and all 

others set equal to zero. 

Summing the columns from the equations above gives us: 

1 2 1 2C                                                                                           ( .5)
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n
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( 2 2 )                                                                                             ( .7)

( ) ( 4 4 )             
2!

n
i

n
i

B

q x A B C D B
x

q x A B C D
x

∂
∆ + − −

∂

∂ ∆
+ + +

∂
                                                                         ( .8)B

 



 79 

3 3

3

4

( ) ( 8 8 )                                                                                        ( .9)
3!

( )( 16 16 )                                                              

n
iq x A B C D B

x

O x A B C D

∂ ∆
+ − −

∂

∆ + + +                            ( .10)B
 

Now, in order to eliminate terms, we set equations (B.8), (B.9), and (B.10) equal 

to zero and Equation (B.7) equal to one, and then solve for A, B, C, and D, such that: 

( 2 2 ) 1
( 4 4 ) 0 12 12 0      
( 8 8 ) 0 3 3 0        
( 16 16 ) 0

A B C D
A B C D B D B D
A B C D A C A C
A B C D

+ − − = 
+ + + = + = → = −
+ − − = − − = → = −
+ + + = 

 

We can then substitute these two equations back into the first four to get 

1
2(2 4 ) 1 2 1 2    ,    

(2 16 ) 0 8 0 12 3
A D A D

D A
A D A D
− = − = 

→ → = = − = − = 
 

Using these two values, we then get 2 1,  and 
3 12

C B= − = − . 

 Another possible method for quickly solving the above system of equations is to 

use the method of LU decomposition by writing the system in matrix form Ax b= , and 

then solving for x, such that: 

1 2 1 2 1
1 4 1 4 0

,               
1 8 1 8 0
1 16 1 16 0

A A
B B

x
C C
D D

− −       
       
       ⋅ = =
       − −
       
       

. 

We have now found the four coefficient values for our 4th order, centered 

difference stencil; therefore, we can now use Equations (B.5) - (B.7) to construct the FD 

stencil. 
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Finally, we have our 4th order, centered difference stencil for the first derivative 

as 

42 1 1 2( 8 8 ) ( )
12

n n n n n
i i i i iq q q q q O x
x x

− − + +∂ − + −
= + ∆

∂ ∆
. 
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APPENDIX C:  2ND ORDER RK2 PROOF 

The following is a proof, which shows that regardless of the spatial discretization 

method, the order of accuracy for any time-integration method is independent of the 

spatial scheme. First let us begin with Equation (3.7), 

( )

 1
1

2 1

1
1 2

( , )                                                       (C.0.1)

( , ),                                              (C.0.2)
1                                       
2
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= + +          (C.0.3)

  

and the following expression, 

( ),                                                         (C.1)n n
tq F q=  

where we can substitute C.0.1 and C.0.2 into C.0.3 to arrive at:  
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2

n n n n ntq q F q F q tF q+ ∆
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If we now use Taylor series expansion (TSE) for both the left and right hand sides of the 

above expression for RK2 we achieve the following: 
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where, if we recognize that ( )
n

nF F q
q

∂
∂

 is the total derivative of ( ( ))F F q t=  with respect 

to t, then 

( ) ,    and   
n n n

n n
tt

F dF dFF q q
q dt dt

∂
= =

∂
. 

Therefore, using this knowledge, we can simplify Equation (C.2) above to be 
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2( ) ( ),                                                    (C.3)n n
tq F q O t= + ∆  

where we easily recognize that Equation (C.3) is equivalent to (C.1) with the addition of 

higher order terms. However, it must be shown that the terms on the order of 3( )O t∆  

from (C.2) do not cancel each other out when we simplified the expression to Equation 

(C.3). 

 Therefore, if we look at the higher order terms on the LHS, we find that 

3
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6
n
ttt

tO t q O t∆
∆ = + ∆ , 

whereas the higher order terms on the RHS are equivalent to  
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If we assume these two expressions are equal to each other we find, 
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Now, if we use the following equalities:  
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then substituting into Equation (C.4), 
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q q q
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, 

we find that these two expressions are not equal to each other; therefore, showing that the 

higher order terms in Equation (C.2) do not cancel each other, and proving that by using 

RK2, Equation (C.3) is equivalent to (C.1) with second order accuracy.  
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APPENDIX D:  DERIVATION OF AB2 AND BDF2 

 In order to derive AB2, we begin with  

( )q F q
t

∂
=

∂
, 

and assume we want to find  

( )
1
2 1

2

n
nq F q

t

+
+∂

=
∂

. 

Using TSE to expand about 
1
2nt +  for the solutions at 1  and n nq q+  yields: 

( )

( )

1 1 1
2 2 2

1 1 1
2 2 2

2
21 3

2
2 3

( )
2 2

  ( ).
2 2

t
n n nn

t tt

t
n n nn

t tt

tq q q q O t

tq q q q O t

∆
+ + ++

∆
+ + +

∆
= + + + ∆

∆
= − + + ∆

 

Next, isolating 
1
2n

tq + provides us with, 

( )

1
2

1
21

2

1 3

1
2

( )

( ) .

n n n
t

n n n
n

tq q q O t

q q qF q O t
t t

+ +

+ +
+

∆ = − + ∆

∂ −
= = + ∆

∂ ∆

 

Next, let us expand ( ) ( )1 and n nF q F q −  about 
1
2nq +  to arrive at: 

( )

( )

1 1
2 2

1 1
2 2

2

1 2

   ( )
2

3 ( ) .
2

n nn
t

n nn
t

tF q F q q O t

tF q F q q O t

+ +

+ +−

∆ = − + ∆ 
 

∆ = − + ∆ 
 

 

Now, taking a TSE about ( )1
2nF q + , we find that, 
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( ) ( )

( ) ( )

1
21 1

2 2

1
21 1

2 2

2

1 2

( )
2

3 ( ),
2

n
n nn

t

n
n nn

t

F tF q F q q O t
q

F tF q F q q O t
q

+
+ +

+
+ +−

∂ ∆
= − + ∆

∂

∂ ∆
= − + ∆

∂

 

where in order to eliminate ( )O t∆ terms, requires: 

( ) ( ) ( )1
21 23 2 ( ).nn nF q F q F q O t+−− = + ∆  

Therefore, we can finally show that, 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

1
2 1 2

1
2 1 2

1
1 2

1 1 3

3 1 ( )
2 2

3 1( ) ( )
2 2

3 1 ( )
2 2

3 ( ).
2

n n n

n n
n n

n n
n n

n n n n

F q F q F q O t

q q O t F q F q O t
t

q q F q F q O t
t

tq q F q F q O t

+ −

+
−

+
−

+ −

= − + ∆

−
+ ∆ = − + ∆

∆

−
= − + ∆

∆

∆
= + − + ∆

 

This concludes the construction of AB2 using TSE and matches Equation (3.2). 

 In contrast to the ABP methods, which expand about 
1
2nq + , the BDFP methods are 

fully implicit with the RHS at 1nq + . First, let us take 

( )
1

1
n

nq F q
t

+
+∂

=
∂

, 

where if we use TSE to expand 1 and n nq q − about 1nq + , we have the following: 

( )

2
1 1 1 3

2
1 1 1 1 3

  ( )
2

2
2 ( ).

2

n n n n
t tt

n n n n
t tt

tq q tq q O t

t
q q tq q O t

+ + +

− + + +

∆
= −∆ + + ∆

∆
= − ∆ + + ∆
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Next, eliminating the terms 2( )O t∆  requires 14 n nq q −− : 

( )

2
1 1 1 1 3

2
1 1 1 3

1 1 1 3

4 4 ( )
2

2
                  2 ( )

2

4 3 2 ( ).

n n n n n
t tt

n n n
t tt

n n n n
t

tq q q tq q O t

t
q tq q O t

q q q tq O t

− + + +

+ + +

− + +

 ∆
− = −∆ + + ∆ 

 
 ∆

− − ∆ + + ∆ 
  

− = − ∆ + ∆

 

If we now solve for 1n
tq + , then  

1 1 1 3

1 13 1
1 22 2

4 3 2 ( )

2 ( ).

n n n n
t

n n n
n
t

q q q tq O t

q q qq O t
t

− + +

+ −
+

− = − ∆ + ∆

− +
= + ∆

∆

 

Now, if we substitute the TSE for 1 and n nq q −  into ( ) ( )1 and n nF q F q − , then we have 

( )

( ) ( )

2
1 1 1 3

2
1 1 1 1 3

   ( )
2

2
2 ( )

2

n n n n
t tt

n n n n
t tt

tF q F q tq q O t

t
F q F q tq q O t

+ + +

− + + +

 ∆
= −∆ + + ∆ 

 
 ∆

= − ∆ + + ∆ 
 
 

 

Again, using TSE to expand ( ) ( )1 and n nF q F q −  about ( )1nF q + , we then achieve 

( ) ( )

( ) ( )

1
1 1 2

1
1 1 1 2

   ( )

2 ( ),

n
n n n

t

n
n n n

t

FF q F q tq O t
q

FF q F q tq O t
q

+
+ +

+
− + +

∂
= + ∆ + ∆

∂

∂
= + ∆ + ∆

∂

 

where we want to eliminate terms of ( )O t∆ , which requires ( ) ( )12 n nF q F q −− , such that 

( ) ( ) ( )1 1 22 ( ).n n nF q F q F q O t+ −= − + ∆  

Now, since we know that ( )1 1n n
tF q q+ += , we can rewrite the above as follows: 
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( ) ( ) ( )
1 13 1

1 1 2 1 22 22 ( ) 2 ( )
n n n

n n n n
t

q q qF q q O t F q F q O t
t

+ −
+ + −− +

= = + ∆ = − + ∆
∆

. 

After simplifying the above equation, we finally have the expression for BDF2: 

( )1 1 1 14 1 2 2 ( , ) ( , )
3 3 3

n n n n n n ntq q q F t q F t q+ − − −∆
= − + − , 

which is equivalent to Equation (3.6). 

It is also important to note that neither derivation for AB2 or BDF2 required any 

knowledge of how we intend to solve for the RHS ( ) ( )1,  or n nF q F q − . In fact, we have 

already seen in Chapter II, that we can represent the right hand side by a wide variety of 

difference schemes, depending on the order of accuracy we want to achieve for the 

spatial derivative. 
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